
BAILSEC.IO

OFFICE@BAILSEC.IO

X: @BAILSECURITY

TG: @HELLOATBAILSEC

FINAL REPORT:
SwapX
Staking Airdrop Vesting Token

June 2024

bailsec.io 1

Disclaimer:

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in the
target system or codebase.

The content of this assessment is not an investment. The information provided in this report is
for general informational purposes only and is not intended as investment, legal, financial,
regulatory, or tax advice. The report is based on a limited review of the materials and
documentation provided at the time of the audit, and the audit results may not be complete or
identify all possible vulnerabilities or issues. The audit is provided on an "as-is," "where-is," and
"as-available" basis, and the use of blockchain technology is subject to unknown risks and flaws.

The audit does not constitute an endorsement of any particular project or team, and we make
no warranties, expressed or implied, regarding the accuracy, reliability, completeness, or
availability of the report, its content, or any associated services or products. We disclaim all
warranties, including the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement.

We assume no responsibility for any product or service advertised or offered by a third party
through the report, any open-source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by, or accessible through the report, its content, and
the related services and products. We will not be liable for any loss or damages incurred as a
result of the use or reliance on the audit report or the smart contract.

The contract owner is responsible for making their own decisions based on the audit report and
should seek additional professional advice if needed. The audit firm or individual assumes no
liability for any loss or damages incurred as a result of the use or reliance on the audit report or
the smart contract. The contract owner agrees to indemnify and hold harmless the audit firm or
individual from any and all claims, damages, expenses, or liabilities arising from the use or
reliance on the audit report or the smart contract.

By engaging in a smart contract audit, the contract owner acknowledges and agrees to the
terms of this disclaimer.

bailsec.io 2

1. Project Details

Important:
Please ensure that the deployed contract matches the source-code of the last commit hash.

Project

SwapX - Staking/Airdrop/Vesting/Token

Website swapx.fi

Language Solidity

Methods Manual Analysis

Github repository https://github.com/SwapX-Exchange/contracts-
rb/tree/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contract
s

Resolution 1 https://github.com/SwapX-Exchange/contracts-
rb/tree/d8c647243d7d14683e32a06b11e2f78912b0abff/contrac
ts

Resolution 2 https://github.com/SwapX-Exchange/contracts-
rb/blob/d2009e66dbbe605523999efb677d0f9664d1758b/con
tracts/MasterChef.sol

bailsec.io 3

2. Detection Overview

Severity

Found

Resolved

Partially
Resolved

Acknowledged
(no change made)

High 6 4 2

Medium 4 3 1

Low 12 7 5

Informational 4 1 3

Governance

Total 26 15 11

2.1 Detection Definitions

Severity

Description

High The problem poses a significant threat to the confidentiality of a
considerable number of users' sensitive data. It also has the
potential to cause severe damage to the client's reputation or result
in substantial financial losses for both the client and the affected
users.

Medium While medium level vulnerabilities may not be easy to exploit, they
can still have a major impact on the execution of a smart contract.
For instance, they may allow public access to critical functions,
which could lead to serious consequences.

Low Poses a very low-level risk to the project or users. Nevertheless the
issue should be fixed immediately

Informational Effects are small and do not post an immediate danger to the
project or users

Governance Governance privileges which can directly result in a loss of funds or
other potential undesired behavior

bailsec.io 4

3. Detection

MerkleTreeAndAirdrop

AirdropClaim

The AirdropClaim contract is a custom distribution contract that exposes a claim function which
is callable by the MerkleTree and MerkleTreeSWPxNFT contracts, indicating that the validation
is completely abstracted to these contracts.
The core functionality of this contract is to distribute the SWPx token via two different pathways:

a) Distribution via Lock Creation: This pathway distributes a percentage of the total amount
to a user via simply creating a lock with the maximum lock duration on the VotingEscrow
contract.

b) Distribution via Vesting Creation: This pathway distributes a percentage of the total
amount to a user via creating a vesting position on the Vesting contract.

The distribution between creating a lock and creating a vesting position is handled by the
veShare variable. A veShare of 10_000 indicates 100% and therefore uses the full amount to
create a lock, vice-versa a share of 0 indicates 0% and uses the full amount to create a vesting
position.

Notably, this contract is meant to be deployed with a corresponding
MerkleTree/MerkleTreeSWPxNFT contract.

bailsec.io 5

Privileged Functions
- transferOwnership
- renounceOwnership
- withdrawTokens
- setVeShare
- setMerkleTreeContract

Issue_01 Lack of SafeERC20 usage

Severity Informational

Description The contract uses the standard ERC20 pattern for transfers/approvals.
This will malfunction for tokens that do not follow the IERC20
interface, for example those that return false or do not return a
boolean on the transfer/approve call.

Recommendations This issue can be acknowledged as long as only the SWPx token is
used.

Comments /
Resolution

Acknowledged.

bailsec.io 6

MerkleTree

The MerkleTree contract is a simple validation contract that allows users to claim tokens from
the corresponding airdrop contract (AirdropClaim) with a valid leaf.

It simply validates a user's allocation in the specified merkle tree and then invokes the claim
function on the airdrop contract. Therefore, the only purpose of the contract is to validate if a
provided leaf is part of a merkle tree, leveraging OpenZeppelin’s MerkleProof library.

Every user with a valid leaf can claim once and is then marked as claimed. Furthermore, the
contract owner can mark a user as claimed, which is useful for preventing owners with a valid
leaf from claiming without the need of changing the whole merkle tree.

Privileged Functions

- transferOwnership
- renounceOwnership
- setMerkleRoot
- setUserClaimed

No issues found.

bailsec.io 7

MerkleTreeSWPxNFT

The MerkleTreeSWPxNFT contract is similar to the MerkleTree contract with the only difference
that the allocation is based on a tokenId and only the original minter of this tokenId can trigger
the claim process.

Privileged Functions

- transferOwnership
- renounceOwnership
- setMerkleRoot

No issues found.

bailsec.io 8

Tokens

SWPx

The SWPx contract is a simple token contract which is heavily inspired by THENA’s
implementation. It allows for an initial mint of 40 million tokens, which is triggered by the Minter
contract.
Furthermore it exposes a mint function which is triggered by the Minter during every epoch
update and mints the desired amount of tokens to the Minter contract, which then further
distributes it to Gauges and other contracts.

Privileged Functions

- setMinter
- initialMint
- mint

No issues found.

bailsec.io 9

SWPxNFT

The SWPxNFT contract is a modified ERC721Enumerable contract, which allows users with a
valid allocation in the corresponding merkle tree to mint tokenIds. Each mint costs native tokens
and must be provided as msg.value with the transaction.

During the contract deployment, the price, max supply and sale timestamp is set. None of these
parameters, besides the price, can be changed afterwards. Additionally, the contract
incorporates a reservedAmount functionality, which mints NFTs without pushing recipients into
the originalMinters mapping, thus not granting them privileges a) & b) below.

Whenever users mint tokens, the minted tokenId will be pushed into the originalMinters
mapping, which then grants the original minters several privileges such as:

a) Royalty fee for each epoch
b) Allocation in the MerkleTreeSWPxNFT contract for each minted tokenId

Each address can only mint once.

Furthermore, NFTs can be used to receive rewards from staking within the MasterChef contract

Privileged Functions

- transferOwnership
- renounceOwnership
- withdraw
- setRoot
- setNftPrice
- reserveNFTs
- setBaseURI

bailsec.io 10

Issue_05 Flaw within reserveNFTs will disrupt royalty calculation

Severity Medium

Description If the reserveNFTs function is invoked while the totalSupply already
reached the MAX_SUPPLY, this means no further tokenIds are minted
but the reservedAmount variable is increased. Therefore, the
totalSupply stays consistent but the reservedAmount increases.

This will have the impact that the claimable function within the
Royalties contract will be disrupted because the divisor is larger than it
should be. (totalSupply does not incorporate the minted
reservedAmount)

In the worst-case scenario, reservedAmount can even become larger
than the current supply, resulting in an underflow revert within
Royalties.claimable.

Illustrated:
a) The owner makes multiple calls to reservedNFT incrementing the
value for reservedAmount to the point where reservedAmount > total
supply.

b) User attempts to claim royalties via the claim function.

c) The claimable function attempts to calculate the reward for an
epoch, with denominator operation as such (_tot - _resAmnt), where
_tot is total supply, and _resAmnt is the reserved amount.

d) Since step a. caused the reserved amount to become larger than
total supply, the calculation for the reward reverts indefinitely.

Illustrated 2:

a) Users interact with the contract as expected, the MAX_SUPPLY is
reached.

bailsec.io 11

totalSupply = 10_000, 1000 NFTs are minted which all can be used to
claim royalties.

b) Owner invokes the reservedNFT function with amount = 150. No
NFTs are minted but reservedNFT is set to 150

c) During the calculation within the Royalties contract, the 1000
tokenIds can claim fees but the divisor is set to 850, effectively making
the contract insolvent after 850 tokenIds have claimed their royalties.

Recommendations Consider reverting in the case where the “_amount” would exceed
MAX_SUPPLY, ensuring that no inconsistencies can occur.

Comments /
Resolution

Resolved.

Issue_06 Hardcoded multisig address is suboptimal for several reasons

Severity Low

Description Whenever the owner invokes the withdraw function, the whole native
token balance is transferred to the multiSig contract. This address is
never changeable which will result in stuck funds for certain scenarios
such as lost keys or compromised multisig participants.

Recommendations Consider transferring the native balance to a _to address.

Comments /
Resolution

Acknowledged.

bailsec.io 12

Issue_07 Reentrancy call into reserveNFTs allows owner to bypass
MAX_RESERVE

Severity Low

Description The reserveNFTs function allows the contract owner to mint a specific
amount of NFTs to an address. The only difference of this approach vs
the standard mint approach is that these mints do not count in for the
royalty distribution, hence the totalSupply is also reduced by the
reservedAmount to determine the royalty distribution:

https://github.com/SwapX-Exchange/contracts-
rb/blob/2900185aa9ec23fa1220b92f555344b5881c19c3/contracts/R
oyalties.sol#L116

The contract exposes an upper limit of 150 tokens to be minted as
reservedAmount and this check is enforced at the beginning of the
function.

However, due to the fact that the CEI pattern is violated and the
_safeMint call invokes a hook on the recipient contract, it is possible
for a malicious owner to reenter into the same function and bypass the
check.

Recommendations Consider adjusting the reservedAmount before the _safeMint call.

Comments /
Resolution

Resolved.

bailsec.io 13

Royalties

The Royalties contract is an epoch-based distribution contract that allows initial NFT minters to
receive rewards for each epoch.

The contract incorporates a depositors mapping which allows the contract owner to add and
remove addresses to it. Once an address is added to this mapping, it can invoke the deposit
function. This function is meant to be called once per epoch and allocates fees to an epoch
while simultaneously storing the accurate NFT supply for this epoch, which is then later used to
determine the claimable pro-rata amount.

Once the epoch is incremented, which is the case after the deposit function has been invoked,
original NFT minters can claim their pro-rata share from the allocated epoch fees, based on the
previously cached totalSupply of this epoch and their minted NFT supply.

It is important to mention that it lies solely in the responsibility of the depositors to correctly
distribute tokens during the correct epoch times. Since this contract is not connected to the
MinterUpgradeable contract, epochs are not validated. Therefore it is possible that multiple
epochs can be rewarded at the exact same timestamp.

Privileged Functions

- transferOwnership
- renounceOwnership
- setDepositor
- removeDepositor
- setOwner
- withdrawERC20

bailsec.io 14

Issue_08 Claimable function is completely flawed

Severity High

Description The rationale of the claimable function is to calculate a pro-rata share
from the fee amount for each specific epoch.

This is done in such a manner to fetch how much NFTs a user has and
calculate for how much % of the totalSupply this accounts for.
Afterwards the fee is allocated to the user based on the result of this.

Illustrated, this means if a user has 10 tokenIds, the fee is 100e18 and
the totalSupply is 100, the user in question will receive 10e18 tokens
from the fee, as he owns 10% of the totalSupply. The calculation in
itself is correct, however, the problem is that the following call which
determines how much tokenIds a user owns:

uint256 weight = swpxNFT.originalMinters(user);

is not epoch specified. Therefore, if there totalSupply is 10 during
epoch 0 and a user has no tokenId minted at this point but only at a
later point (ie. the user has minted 5 tokens during epoch 2), the
calculation in claimable for epoch 0 will still use 2 as weight, while in
fact the user has no tokenIds during epoch.

Illustrated:

e) Deposit is called regularly, from epoch 0 till epoch 3 which caches
values for feesPerEpoch, totalSupply and reservedAmount for each
epoch.
f) Alice mints 10 tokens in epoch 3.
g) Alice makes a call to claim function which in turn triggers call to
claimable to determine the claimable amount.
h) Alice has no checkpoints stored yet, so the userCheckpoint
mapping will return 0. so the loop starts from epoch 0 to current
epoch 3.

bailsec.io 15

i) Even though Alice only minted tokens in epoch three, the loop uses
her NFT weight added in epoch three via originalMinters.
 j) Alice receives rewards from epoch 0 till current epoch 3.

This is a fundamental flaw in the calculation approach and will render
the function completely unusable.

Recommendations A fix for this issue would be to specifically cache which user has
minted how many tokenIds during each specific round. The
implementation of this fix is non-trivial and an additional nominal fee
will apply to validate this architectural change as this does not fall
under our standard resolution round. (general refactoring)

Another, more simple solution, would be to only allow the activation of
the Royalties contract (execution of deposit), once in fact all tokenIds
have been minted. This way it is ensured that the totalSupply remains
unchanged and the calculation works.

Comments /
Resolution

Failed resolution, a change in the NFT minting process has been
implemented which prevents minting of nfts after the 12th epoch.

https://github.com/SwapX-Exchange/contracts-
rb/commit/ff0cf183e41a188c2c7ec69872a8285f96cb44db

First of all, it needs to be mentioned that this change does not
correctly reflect the epoch time, as epochs are always rounded down
to the latest point in weeks. Furthermore, this change alone is pointless
as it does not prevent the actual described issue. users can still mint in
epoch 3 and gain rewards from epoch 0,1,2 (in these epochs the
minted tokenId from epoch 3 is not incorporated, thus the accounting
is incorrect).

A fix needs to prevent calling claimTill before all tokens have been
minted. It must be ensured that users can only claim after the minting
has been finished completely.

bailsec.io 16

Summarized, the following steps must be taken:

a) Ensure that the epoch start rounds down to the nearest week time
(non-critical)

b) Ensure that the claimTill function can only be invoked *after* all
NFTs have been minted (critical)

Resolution 2: Acknowledged.

The client indicated that royalties will only be deposited *after* all NFTs
have been minted. This ensures that users cannot claim earlier.

bailsec.io 17

Issue_09 Claim call can run out of gas if epochs are very far progressed

Severity Medium

Description As already mentioned within the contract description, whenever the
deposit function is called, epochs are increased. There is no safeguard
that each epoch lasts 1 week whatsoever.

Therefore, it is very much possible for the epochs parameter to grow
very large while simultaneously not all users claim each epoch.

In such a scenario where a user has never claimed and the epoch is
very large, this can result in the claimable function to run out of gas,
permanently denying a user to claim his royalties.

Recommendations Consider incorporating a parameter which allows users to determine
up to which epoch the claim should happen. This parameter should be
validated to be larger than the last claimed epoch and smaller/equal
the current epoch. Furthermore it should be used as a setter for the
userCheckpoint mapping.

Comments /
Resolution

Resolved.

bailsec.io 18

Issue_10 Deposit before totalSupply > 0 will result in division by zero error

Severity Medium

Description Currently, there is no limitation when a deposit can happen. In such a
scenario where a deposit happens with totalSupply = 0, it would
essentially break the contract in later operations because of a division
by zero revert.

Recommendations Consider ensuring that the totalSupply - reservedAmounts is non-zero.

Comments /
Resolution

Acknowledged.

Issue_11 Direct transfer of native token will result in locked funds

Severity Low

Description The contract exposes a fallback receive function which allows for
receiving native tokens. These tokens will however remain locked
within the contract until withdrawn by governance.

Recommendations Consider removing the fallback receive function.

Comments /
Resolution

Resolved.

bailsec.io 19

MasterChef

MasterChef

The MasterChef contract is a custom NFT staking contract which is heavily inspired by
Sushiswap’s MasterChef and incorporates a similar reward algorithm. Users can stake their
NFTs and receive the SWPx token as reward. Contrary to other NFT staking contracts, all
tokenIds have the same weight, thus making the reward distribution fair.

The reward algorithm is slightly customized and allows for two different reward approaches
which both distribute the same token:

a) Standard Reward: This is the standard form of reward distribution and is allocated via the
setDistributionRate function. The source for these rewards is through the
SWPxNFTFeeConverter contract, whenever there are swap fees claimed and distributed,
or there are sale proceeds distributed by the NFTSalesSplitter. Rewards which are
accrued via this form can be simply harvested directly to a claimer’s wallet.

b) Extra Reward: This is an additional form of reward distribution and is allocated via the

setDistributionRateExtra function. The source for these rewards solely stems from the
Minter contract in the first 12 weeks in the form of team emissions.

Additionally, the contract exposes view-only functionality which keeps track of how many
rewards are distributed on each epoch.

Appendix: RewardDebt Modification:

The rewardDebt parameter keeps track of how much rewards would have been allocated to a
user based on his amount and the most recent accumulator. This variable exists to ensure users
will always only receive rewards based on their last update and the increased accumulator, it is
furthermore used to be subtracted from the accumulated reward.

Usually, whenever a deposit or a withdrawal is happening, the accumulator is updated, rewards
are claimed based on the updated accumulator and the updated rewardDebt is set.

bailsec.io 20

This contract however incorporates a different methodology upon deposits and withdrawals.
First of all, rewards are not distributed upon these interactions and the rewardDebt is only
updated with the newly added/removed amount. The historic rewardDebt is not changed. This
mechanism was incorporated to ensure that deposits and withdrawals will not falsify current
pending rewards.

Illustrated (Deposit):

- accRewardsPerShare = 100e30
- supply = 10
- rewardPerSecond = 1e18

a) Charles deposits 10 NFTs

-> user.amount = 10
-> user.rewardDebt = (10 * 100e30 / 1e12) = 1000e18
-> supply = 20

b) 100 seconds have passed and Charles deposits again 10 tokens (At this point, Charles should
receive 50e18 tokens for his historic stake, since he owns 50% of the supply and 100e18 tokens
were distributed during this period)

-> accRewardsPerShare = 100e30 + (100e18 * 1e12 / 20)
-> 105e30
-> user.amount = 20
-> user.rewardDebt = 1000e18 + (10 * 105e30 / 1e12) = 2050e18
-> 2050e18

c) Charles calls harvest
-> accumulatedReward = 20 * 105e30 / 1e12 = 2100e18
-> _pendingReward = 2100e18 - 2050e18 = 50e18

Therefore, it is mathematically proved that the deposit function works flawlessly.

bailsec.io 21

Illustrated:

- accRewardsPerShare = 100e30
- supply = 10
- rewardPerSecond = 1e18

a) Charles deposits 10 tokens:
-> user.amount = 10
-> user.rewardDebt = 1000e18

b) Charles waits 100 seconds and calls withdraw for his 10 tokens:

-> accRewardsPerShare = 100e30 + (100e18 * 1e12/20) = 105e30
-> user.rewardDebt = 1000e18 - (10 * 105e30 / 1e12) = -50e18

c) Charles calls harvest:
-> accumulatedReward = 0
-> _pendingReward = 50e18

Therefore, it is mathematically proven that the withdraw function works flawlessly.

However, as from our experience, such modifications are never encouraged and if there is no
reasonable need for having such intrusive modification, we often recommend clients to stick to
battle-tested code as this ensures that no oddities such as rounding issues can occur.
Due to this recommendation, the client changed the code in accordance to the standard
Masterchef logic where rewards are immediately transferred out upon deposit/withdrawals and
the rewardDebt is simply set to:

user.amount * accRewardPerShare / precision

Furthermore, the contract is only meant to be used with the SWPX token as a reward token.

Privileged Functions

- transferOwnership
- renounceOwnership
- setVestingEscrowShare

bailsec.io 22

- addKeeper
- removeKeeper
- setRewardPerSecond
- setRewardPerSecondExtra

Issue_12 Edge-case within updatePool will result in revert due to underflow

Severity High

Description The updatePool function is the most fundamental function of the
whole contract, it essentially handles the correct update of the
accumulator to ensure a fair token distribution among all stakers.

The mechanism that facilitates this is heavily inspired by the traditional
MasterChef mechanism as it simply divides the rewards which are
distributed since the last update to the most recent timestamp by the
supply:

uint256 reward = time * rewardPerSecond;
pool.accRewardPerShare = pool.accRewardPerShare + (reward *

ACC_TOKEN_PRECISION) / nftSupply;

Since the contract does not work with continuous rewards but relies
on the notification of rewards, the possibility exists that there are
currently no rewards to be distributed. This mechanism is inspired by
the Synthetix Staking Rewards mechanism and is facilitated via the
getRightBorder function, as this determines up to which timestamp
rewards are allocated. In the scenario where there are no rewards up
to the current block.timestamp, it will simply calculate them until the
border, ensuring the contract does not attempt to distribute more
rewards than actually allocated:

Math.min(block.timestamp, lastDistributedTime);
uint256 time = rightBoarder > pool.lastRewardTime ? rightBoarder -

pool.lastRewardTime : 0;

bailsec.io 23

Now since the main functionality of the updatePool function is clear,
we need to describe an additional functionality which serves for view-
only purposes: The introduction of _epochRewards.

This basically just stores information of how many rewards have been
allocated to which epoch.

That functionality introduces a critical error: A potential underflow
vulnerability in L 354 can result in a revert of the function call and a
permanent DoS:

_epochRewardsExtra[activePeriod] = reward -

rewardsToLastActivePeriod;

This scenario can occur if rewardsToLastActivePeriod becomes larger
than the actual distributed rewards:

uint256 rewardsToLastActivePeriod = reward * (activePeriod -

pool.lastRewardTime) / time;

Since the activePeriod is not limited by the rightBoarder, the multiplier
can quickly become larger than the divisor, resulting in the result
becoming larger than “reward” and thus resulting in a revert due
underflow.

Illustrated:

pool.lastRewardTime = 604 800(epoch 1)
_lastActivePeriod = 604 800(epoch 1)
rightBoarder = 1 209 600(epoch 2)
activePeriod = 1 814 000(epoch 3)

a) A user calls the updatePool function, rewards from 604 800 to 1
209 600 are calculated and correctly allocated to

bailsec.io 24

pool.accRewardPerShare

b) The epoch functionality enters the else and then if condition:

https://github.com/SwapX-Exchange/contracts-
rb/blob/2900185aa9ec23fa1220b92f555344b5881c19c3/contracts/M
asterChef.sol#L349

rewardsToLastActivePeriod is now calculated, due to activePeriod
being larger than rightBoarder, the result will be larger than reward.

Therefore, the following calculation will underflow / revert:

_epochRewards[activePeriod] = reward - rewardsToLastActivePeriod;

The provided PoC is just one of many scenarios where this issue can
occur.

Another example state where this can occur:

pool.lastRewardTime = 1 000 000
_lastActivePeriod = 604 800
rightBoarder = 1 100 000
activePeriod = 1 209 600

The root-cause of this issue is the lack of the border incorporation into
the epoch functionality.

On top of that, the third condition seems to be unreachable:

https://github.com/SwapX-Exchange/contracts-
rb/blob/2900185aa9ec23fa1220b92f555344b5881c19c3/contracts/M
asterChef.sol#L354

This issue is also present within the corresponding view-only functions.

bailsec.io 25

Recommendations At BailSec, we often emphasize keeping smart contracts as trivial as
possible. Any unnecessary complex logic will increase the exploit risk.

Specifically since this logic is only used for view-only purposes, we
simply recommend removing it, to fix the aforementioned issue and
eventually any other issues which are caused by this logic.

Comments /
Resolution

Resolved.

Issue_13 Incorrect approval amount to Vesting contract will break harvestExtra
function

Severity High

Description During the harvestExtra function, rewards are not directly transferred
to the caller but rather indirectly distributed via:

a) Creating a VE position
b) Creating a vesting position

for b) the approval is incorrect, which results in a DoS of the
harvestExtra function in case the share for the vesting position is larger
than the share for the VE position.

Recommendations Consider approving vestingAmount instead of veShareAmount.

Comments /
Resolution

Resolved.

bailsec.io 26

Issue_14 Lack of emergencyWithdraw function

Severity Low

Description Currently, the contract does not expose an emergencyWithdraw
function, which can be useful in case there are unexpected issues
during the pool update.

Recommendations Consider implementing a emergencyWithdraw function that loops
over all owned tokenIds, transfers these out and resets the
rewardDebt.

Comments /
Resolution

Failed resolution, the tokenIndices mapping is not cleared during the
delete call.

We recommend clearing all storage variables separately

Resolution 2: Fixed

The tokenIndices mapping is now cleared.

bailsec.io 27

Issue_15 Lack of upper limit for setRewardPerSecond/Extra can result in stuck
rewards

Severity Low

Description The setRewardPerSecond/Extra functions allow the contract owner to
change the rewardRate. This will only have an impact if there is a valid
running epoch, as otherwise it would adjust the rewardRate but if
there is no running epoch, this rewardRate is not used and will be just
disregarded whenever the setDistributionRate/Extra function is called.

Therefore, it simply extends or decreases the lastDistributedTime,
depending if the new rate is smaller or larger than the current rate.

In such a scenario where the new rewardRate is very large, this could
result in a loss of rewards because:

notDistributed/_rewardPerSecond

rounds to zero.

Recommendations Consider either implementing appropriate validation, ensuring that the
result of the division is non-zero or being very conscious about calling
this function and setting up a secure governance structure.

Comments /
Resolution

Acknowledged.

bailsec.io 28

Issue_16 Call to setDistributionRate and setDistributionRateExtra without token
transfer can result in flawed reward accounting

Severity Low

Description Whenever one of both aforementioned functions is invoked, the
amount will be allocated as reward. However, it is not guaranteed that
this amount is in fact provided by the caller.

Recommendations Consider only using these functions for their distinct purposes,
ensuring that a sufficient amount of rewards is transferred in.

Comments /
Resolution

Acknowledged.

Issue_17 Incorrect _epochRewards allocation in multiple scenarios will result in
flawed settings

Severity Low

Description As already explained in the issue above, the contract incorporates a
_epochRewards[epoch] mapping, which represents how much
rewards have been distributed/allocated during each epoch.

There are two distinct scenarios for this mechanism:

a) The MC is in the current active epoch: Allocate all rewards that are
happening during this epoch to the current epoch.

Flaw: If the current block.timestamp is already in the next epoch,
rewards are still allocated to the past epoch. If the epoch is now
updated, the epoch beginning may be smaller than the last used
block.timestamp.

b) The MC is in a past epoch: Allocate all rewards up to the current

bailsec.io 29

active epoch to the past epoch.

Flaw: If multiple epochs have been passed since the last update, all
rewards up to the most recent epoch are allocated to the past epoch.

Essentially, the issue is that the period is not always sync’d with the
Minter period, which means if the _lastActivePeriod is in the past while
there have been many period updates in the minter, all rewards are
naturally allocated to the _lastActivePeriod.

This issue can also be rather a design choice than a real issue.

Recommendations As already explained above, since the only purpose of this logic is
for view-only reasons and it is not further used in any other
contracts of the architecture, we simply recommend removing this
mechanism completely.

Comments /
Resolution

Resolved.

bailsec.io 30

Issue_18 balanceOf accounting can dilute reward allocation

Severity Informational

Description Whenever the accRewardPerShare/accRewardPerShareExtra
variables are increased, the reward for the determined period is
divided by the current NFT supply in the contract. This ensures that
each tokenId receives its rightful share.

If however NFTs are transferred to the contract manually (by accident)
this will result in some permanently unretrievable rewards because the
divisor is higher than it should be.

Recommendations Consider incorporating internal accounting which
increments/decrements a totalNFTStaked variable upon
deposit/withdraw.

Comments /
Resolution

Acknowledged.

bailsec.io 31

Issue_19 Reentrancy possibility in case of non-standard ERC20 reward token

Severity Informational

Description The deposit and withdraw functions are vulnerable to reentrancy
attacks due to the reward out transfer before the storage update.

This allows for draining all rewards from the contract. However, this
issue is only rated as informational because the SWPx token will be a
standard ERC20 token.

Recommendations Consider not using any non-standard ERC20 token or implementing a
reentrancy guard.

Comments /
Resolution

Acknowledged.

bailsec.io 32

Issue_20 Inconsistent rounding direction within deposit and withdraw can result
in negligible manipulation of rewardDebt

Severity Informational

Description Whenever users deposit NFTs, the rewardDebt is increased as follows:

tokenIds.length * pool.accRewardPerShare) / ACC_TOKEN_PRECISION

Notably, this calculation rounds down.

Whenever users withdraw NFTs, the rewardDebt is decreased with the
same calculation. Rounding down means nothing else than truncation
and this only happens if the division is not evenly. Therefore it is
possible to round down during deposit and not round down during
withdrawals.

Recommendations We do not consider this issue as a dramatic one because the rounding
gain will be negligible. However, we encourage the development team
to execute further tests with this in mind.

Comments /
Resolution

Resolved, this practice has been removed.

bailsec.io 33

Conversion

NFTSalesSplitter

The NFTSalesSplitter contract is a very trivial distribution contract which allows the contract
owner to add addresses to the splitter mapping. Once an address is successfully added to that
mapping it can invoke the split function which distributes the full contract balance of the native
token to:

a) SWPxNFTFeeConverter, where it is then further distributed to the MC as a reward for
stakers

b) Royalties, where it is allocated as a reward for original NFT minters

The distribution is dependent on the converterFee and royaltiesFee settings.

As already mentioned within the Royalties contract section, splitters must act responsibly when
calling the deposit function on the Royalties contract as this will increment epochs.

bailsec.io 34

Privileged Functions
- transferOwnership
- renounceOwnership
- setConverter
- setSplitter
- setRoyalties
- withdrawERC20
- setFees

Issue_21 Incorrect validation within setFees function can permanently brick the
contract

Severity Medium

Description The setFees function allows for setting the converterFee and
royaltiesFee. The following check is employed as safeguard:

require(converterFee + royaltiesFee <= PRECISION, 'too many');

This check is incorrect as it only validates the current fees instead of
the new fees. In the scenario where the new fees are > 10_000, this
check will pass but then has the effect that it can never be changed
again.

Recommendations Consider validating the input parameters.

Comments /
Resolution

Resolved.

bailsec.io 35

Issue_22 Split function might run out of gas if pairs/tokens array within
SWPxNFTFeeConverter grows too large

Severity Low

Description Whenever the split function is called, this will invoke the claimFees
function on the SWPxNFTFeeConverter contract, which then calls the
claimFees function on all pairs in the “pairs” array. The same applies to
the swap call.

This will not work if the array becomes very large, DoS’ing the function
flow.

Recommendations Consider ensuring that the pairs/tokens array within the
SWPxNFTFeeConverter does not grow too large.

Comments /
Resolution

Acknowledged.

bailsec.io 36

SWPxNFTFeeConverter

The SWPxNFTFeeConverter is a simple fee handler contract with the main purpose of claiming
swap fees from each pair, swapping these fees to the SWPx token and distributing the proceeds
to the MasterChef contract. This logic is facilitated by the claimFees and swap functions which
are callable by so-called keepers.

This contract is highly configurational by governance such as

a) Adding/removing pairs
b) Adding/removing tokens
c) Configuration of swap paths
d) Adding and removing keepers

Furthermore, besides the keeper logic, governance can manually swap via the Algebra and
Solidly router.

Additionally to the fee claim mechanism on V2 pairs, this contract will automatically receive fees
from V3 pairs during the claimFees call on the CLFeesVaultV2 contract and a partial amount of
the NFT sale proceeds via the NFTSalesSplitter contract, all these fees are swapped to the
SWPx token once either keepers or governance becomes active.

Privileged Functions

- transferOwnership
- renounceOwnership
- claimSingleFee
- updateMasterchefDistributionRate
- addPair
- removePair
- addToken
- removeToken
- setPathToToken
- removePathFromToken
- withdrawERC20
- setKeeper

bailsec.io 37

- removeKeeper
- setRouterSolidly
- setRouterAlgebra
- setMasterchef
- setRewardToken
- swapManualInputSingleAlgebra
- swapManualV2
- triggerPause

bailsec.io 38

Issue_23 Swaps will never work for tokens with a transfer-tax

Severity High

Description The contract currently only invokes swap functions without transfer-tax
compatibility. Algebra specifically exposes the
exactInputSingleSupportingFeeOnTransferTokens function which
invokes the swapWithPaymentInAdvance function on the specific
pool. The same applies for Solidly’s router with the
swapExactTokensForTokensSupportingFeeOnTransferTokens function

The idea behind these functions is to support tokens where the input
amount can only be determined once it has been received.

Recommendations Consider using Solidly’s swap for transfer-tax tokens as governance
function which then allows to manually swap these transfer tokens to a
non-transfer-tax token and then swap this token to SWPx via the
standard flow of the swap function.

Another alternative might be to change the _swap function to just
invoke the
swapExactTokensForTokensSupportingFeeOnTransferTokens function
on the V2 router.

Comments /
Resolution

Acknowledged.

bailsec.io 39

Issue_24 Incorrect approval setting within _swapManualV2 will DoS swaps using
the Solidly router

Severity High

Description Within the _swapManualV2 function, the amount is approved to the
algebraRouter instead of the solidlyRouter. If the solidlyRouter was
changed beforehand, this means there is no approval for existing
tokens, rendering the whole V2 swap unusable.

Recommendations Consider approving the amount to the solidlyRouter instead of to the
algebraRouter.

Comments /
Resolution

Resolved.

Issue_25 Failed swap will break _swap function

Severity Low

Description The _swap function was developed in such a way that failed swaps do
not disrupt the whole function (due to the try-catch call).

However, due to the require statement, such a failed swap will still
revert the whole call.

Recommendations Consider removing this check.

Comments /
Resolution

Resolved.

bailsec.io 40

Issue_26 Lack of slippage protection

Severity Low

Description Within the _swap function the determined minimum output amount is
set to zero. This allows MEV bots to sandwich trades and will result in a
loss for the protocol.

Recommendations Due to the fact that this function will be called probably multiple times
per day and the fact that keepers are presumably handled via
Chainlink automation, thus not being capable of providing such a
parameter as function input parameter, this issue can be
acknowledged.

Comments /
Resolution

Acknowledged.

Issue_27 Router change will not reset approvals

Severity Low

Description The contract owner can change the Algebra and Solidly router via the
setRouterSolidly and setRouterAlgebra functions.

These router changes will not reset the existing approvals.

Recommendations A fix for this issue would be to loop over all existing tokens and revoke
their approvals. However, that could introduce another problem if the
tokens array grows very large, thus DoS’ing router changes.

Therefore we recommend just adding a trivial governance function
that allows for manually revoking approvals in such a scenario where a
router turns malicious (ie. through proxy update).

Comments /
Resolution

Resolved.

bailsec.io 41

Issue_28 addToken function can result in falsified tokens array

Severity Low

Description The addToken function allows adding new tokens to the tokens array.
There is currently no check if the same token is already existing in the
array, which would result in duplicate entries.

Recommendations Consider ensuring that the token is not yet added as a token.

Comments /
Resolution

Resolved.

bailsec.io 42

Vesting

The Vesting contract is a trivial vesting contract that allows linear vesting of tokens over a
determined time period. Whenever a vesting position is initiated, it will start with linearly vesting
tokens once the initial cliff time has been reached.

The contract owner can change the cliff time and vesting period at will and the vestTokensFor
function is mainly intended to be used by the MasterChef and the AirdropClaim contract. This
contract is only meant to be used with the SWPx token.

Privileged Functions

- transferOwnership
- renounceOwnership
- changeVestingCliff
- changeVestingPeriod

bailsec.io 43

Issue_29 Flaw in claim function allows to drain the contract

Severity High

Description During the claimable function, it is calculated how much tokens can be
claimed from a vesting position. This is done in such a manner to
incorporate how much was already claimed and then deduct this from
the totalAmount.

However, due to the fact that the totalAmount has no upper limit
because it is simply depending on the block.timestamp instead of the
minimum between block.timestamp and (vestingUnlockStart +
vestingPeriodSnapshot), the totalAmount can grow in fact way larger
than the maximum vestable amount.

An attempt to encounter this is done at the end of the function by
ensuring that only the maximum vestable amount can be claimed:

return
claimableAmount > userVestingInfoMem.amount
? userVestingInfoMem.amount
: claimableAmount;

This approach is however insufficient.

Illustrated:

vestingCliff = 0
vestingPeriod = 604 800

With this parameters, any amount will be linearly vested over the
course of 604 800 seconds (1 week)

a) Charles locks 100e18 tokens at TS 604 800
- UserVestingInfo
-> amount = 100e18

bailsec.io 44

-> start = 604 800
-> claimed = 0
-> vestingCliffSnapshot = 604 800

b) Charles calls claim after 1 814 400

- totalAmount = 200e18
- claimableAmount = 200e18
- return: 100e18
- _userVestingInfo = 100e18
- transfer 100e18 tokens out

c) Charles calls claim at the same timestamp once again

- totalAmount = 200e18
- claimableAmount = 100e18
- return: 100e18
- _userVestingInfo = 200e18
- transfer 100e18 tokens out

Charles therefore successfully stole 100e18 tokens and can further
drain the contract if more time passes.

Recommendations Consider calculating totalAmount with the upper limit as the minimum
between block.timestamp and (vestingUnlockStart +
vestingPeriodSnapshot). This ensures totalAmount will never become
larger than how much the user should actually receive, which is in our
example 100e18.

Furthermore, it is mandatory to extend testing scenarios for this
function.

Comments /
Resolution

Resolved.

	swapx titel page Example
	Bailsec - SwapX - Staking Airdrop Vesting - Final Report

