
BAILSEC.IO

OFFICE@BAILSEC.IO

X: @BAILSECURITY

TG: @HELLOATBAILSEC

FINAL REPORT:

SwapX Exchange
May 2024

bailsec.io 1

Disclaimer:

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in the
target system or codebase.

The content of this assessment is not an investment. The information provided in this report is
for general informational purposes only and is not intended as investment, legal, financial,
regulatory, or tax advice. The report is based on a limited review of the materials and
documentation provided at the time of the audit, and the audit results may not be complete or
identify all possible vulnerabilities or issues. The audit is provided on an "as-is," "where-is," and
"as-available" basis, and the use of blockchain technology is subject to unknown risks and flaws.

The audit does not constitute an endorsement of any particular project or team, and we make
no warranties, expressed or implied, regarding the accuracy, reliability, completeness, or
availability of the report, its content, or any associated services or products. We disclaim all
warranties, including the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement.

We assume no responsibility for any product or service advertised or offered by a third party
through the report, any open-source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by, or accessible through the report, its content, and
the related services and products. We will not be liable for any loss or damages incurred as a
result of the use or reliance on the audit report or the smart contract.

The contract owner is responsible for making their own decisions based on the audit report and
should seek additional professional advice if needed. The audit firm or individual assumes no
liability for any loss or damages incurred as a result of the use or reliance on the audit report or
the smart contract. The contract owner agrees to indemnify and hold harmless the audit firm or
individual from any and all claims, damages, expenses, or liabilities arising from the use or
reliance on the audit report or the smart contract.

By engaging in a smart contract audit, the contract owner acknowledges and agrees to the
terms of this disclaimer.

bailsec.io 2

1. Project Details

Important:
Please ensure that the deployed contract matches the source-code of the last commit hash.

Project

SwapX - VE Scope

Website swapx.fi

Language Solidity

Methods Manual Analysis

Github repository https://github.com/SwapX-Exchange/contracts-
rb/tree/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contract
s

https://github.com/SwapX-Exchange/contracts-
rb/blob/2900185aa9ec23fa1220b92f555344b5881c19c3/contra
cts/MonolithicVoter.sol

Resolution 1 https://github.com/SwapX-Exchange/contracts-
rb/tree/88fdbc4420e4bd176ef9acd69a1a56827489ef13/contrac
ts

Resolution 2 https://github.com/SwapX-Exchange/contracts-
rb/tree/79917a562ef20ea31304073f1737f29aadd6d92a/contract
s

bailsec.io 3

2. Detection Overview

Severity

Found

Resolved

Partially
Resolved

Acknowledged
(no change made)

High 10 6 4

Medium 11 7 4

Low 11 8 3

Informational 10 3 7

Governance 6 6

Total 48 24 24

2.1 Detection Definitions

Severity

Description

High The problem poses a significant threat to the confidentiality of a
considerable number of users' sensitive data. It also has the
potential to cause severe damage to the client's reputation or result
in substantial financial losses for both the client and the affected
users.

Medium While medium level vulnerabilities may not be easy to exploit, they
can still have a major impact on the execution of a smart contract.
For instance, they may allow public access to critical functions,
which could lead to serious consequences.

Low Poses a very low-level risk to the project or users. Nevertheless the
issue should be fixed immediately

Informational Effects are small and do not post an immediate danger to the
project or users

Governance Governance privileges which can directly result in a loss of funds or
other potential undesired behavior

bailsec.io 4

3. Detection

Global

Issue_01 Lack of safeTransfer usage

Severity Informational

Description The contract uses the standard transfer pattern for ERC20 transfers,
including a true check. This will malfunction for tokens that do not
return a boolean on the transfer.

This is only rated as informational due to the fact that the SwapX token
is used with the transfer pattern.

Recommendations Consider using safeTransfer.

Comments /
Resolution

Acknowledged.

bailsec.io 5

Factories

BribeFactoryV3

The BribeFactoryV3 contract is the factory contract for Bribes. It is responsible for the
deployment and configuration of Bribes, which includes the setting of rewardTokens upon each
deployment. Bribe deployments (internal & external) are always executed upon a new Gauge
deployment and will then be attached to the deployed Gauge.

Furthermore the BribeFactoryV3 serves as the privileged address for Bribes and exposes an
interface which allows the execution of the following privileged functions on the Bribes contract:

a) addReward
b) setVoter
c) setMinter
d) emergencyRecoverERC20
e) recoverERC20AndUpdateData

The contract storage holds a defaultRewardToken array which is initially set up with six tokens
but can be arbitrarily extended or decreased. This array will be used as initialization value for
newly deployed Bribes.

This contract is meant to be used as an implementation contract for a proxy.

Privileged Functions:

- transferOwnership
- renounceOwnership
- createBribe
- setVoter
- setPermissionRegistry
- pushDefaultRewardToken
- removeDefaultRewardToken
- addRewardToBribe
- addRewardsToBribe
- addRewardToBribes

bailsec.io 6

- addRewardsToBribes
- setBribeVoter
- setBribeMinter
- setBribeOwner
- recoverERC20From
- recoverERC20AndUpdateData

Issue_02 Hardcoded defaultRewardTokenAddresses are non existent

Severity Informational

Description Upon contract initialization, six addresses are pushed into the
defaultRewardToken array:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/fac
tories/BribeFactoryV3.sol#L38

Upon the inspection on the block explorer:
https://www.okx.com/de/web3/explorer/xlayer/

None of these addresses is corresponding to a token.

Recommendations Consider removing this redundant operation.

Comments /
Resolution

Resolved.

bailsec.io 7

GaugeFactoryV2

The GaugeFactoryV2 contract is the factory for GaugeV2 contracts and is responsible for the
correct deployment of these. It is solely meant to be called by the VoterV3 contract and exposes
an interface to invoke privileged functions on any deployed GaugeV2 contract, notably:

a) activateEmergencyMode
b) stopEmergencyMode
c) setRewarderPid
d) setGaugeRewarder
e) setDistribution
f) setInternalBribe

The activateEmergencyMode and stopEmergencyMode functions are solely callable by the
EmergencyCouncil, which is configured within the PermissionsRegistry contract.

This contract is meant to be used as an implementation contract for a proxy.

Privileged Functions:

- transferOwnership
- renounceOwnership
- setRegistry
- createGaugeV2
- activateEmergencyMode
- stopEmergencyMode
- setRewarderPid
- setGaugeRewarder
- setDistribution
- setInternalBribe

bailsec.io 8

Issue_03 GaugeV2 does not expose setRewarderPid

Severity Informational

Description The setRewarderPid function allows an allowed address to invoke the
setRewarderPid function on a GaugeV2 contract.

However, contrary to the GaugeV2_CL contract, the GaugeV2
contract does not expose such a functionality, rendering the function
redundant.

Recommendations Consider simply removing the setRewarderPid function.

Comments /
Resolution

Resolved.

bailsec.io 9

GaugeFactoryV2_CL

The GaugeFactoryV2_CL contract is the factory for GaugeV2_CL contracts and is responsible
for the correct deployment of these and the corresponding fee vaults (CLFeesVault &
CLFeesVault2).
It is solely meant to be called by the VoterV3 contract and exposes an interface to invoke
privileged functions on any deployed GaugeV2_CL contract, notably:

a) activateEmergencyMode
b) stopEmergencyMode
c) setRewarderPid
d) setGaugeRewarder
e) setDistribution
f) setInternalBribe
g) setGaugeFeeVault

The activateEmergencyMode and stopEmergencyMode functions are solely callable by the
EmergencyCouncil, which is configured within the PermissionsRegistry contract.

This contract is meant to be used as an implementation contract for a proxy.

Privileged Functions:

- transferOwnership
- renounceOwnership
- createGaugeV2
- activateEmergencyMode
- stopEmergencyMode
- setRegistry
- setRewarderPid
- setGaugeRewarder
- setDistribution
- setInternalBribe
- setGaugeFeeVault

No issues found.

bailsec.io 10

Gauges

GaugeV2

The GaugeV2 contract is a simple staking contract that allows users to stake their tokensfor a
reward token. It employs similar mechanics to the Synthetix Staking Rewards contract with
minor modifications such as an optional rewarder, emergency options and a few other
functionalities

The owner of this contract remains the GaugeFactoryV2 contract and can never be changed.

Privileged Functions:

- transferOwnership
- renounceOwnership
- setDistribution
- setGaugeRewarder
- setInternalBribe
- activateEmergencyMode
- stopEmergencyMode
- getReward
- notifyRewardAmount

bailsec.io 11

Issue_04 Governance Privilege: Funds can be permanently locked in the
contract

Severity Governance

Description Currently, governance of this contract has several privileges for
invoking certain functions that can drastically alter the contracts
behavior.

For example: It is possible to add an incompatible ExtraRewarder
which then prevents withdrawals.

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

bailsec.io 12

Issue_05 claimFees will always revert if one of both token is a transfer-tax token

Severity High

Description The claimFees and corresponding _claimFees function claims the
outstanding balance from the Pair/PairFees contract and transfers it to
this contract. The return value of the transferred balance is then
cached into (claimed0, claimed1) and is then distributed to the internal
bribe in the known manner.

A problem arises if one of both tokens is a token with a transfer-tax, as
that would essentially mean that the cached balance does not
correspond to the real received balance and therefore the bribe
distribution always reverts.

This effectively results in a DoS of the claimFees function and fees
being permanently stuck in the pair.

This issue is specifically severe because AMMs are/should usually be
compatible with fee-on-transfer tokens.

Recommendations Consider incorporating a before-after balanceOf check and then only
distribute as much as was received.

Comments /
Resolution

Acknowledged, transfer-tax tokens will not be supported as tokens for
liquidity pairs.

bailsec.io 13

Issue_06 Lack of rewarder update during
emergencyWithdraw/emergencyWithdrawAmount allows for unfairly
stealing majority of rewards from GaugeExtraRewarder

Severity Medium

Description Rewarders work in a very specific way: They use the latest provided
balance of a user to determine rewards for the given time period.

Illustrated:

a) Alice deposits 100e18 tokens at TS = 10_000
b) Alice withdraws 50e18 tokens at TS = 20_000
c) Alice will receive rewards based on 10_000 seconds and 100e18
tokens

During the emergencyWithdraw and emergencyWithdrawAmount
functions, there is no such onReward call to the Rewarder that adjusts
the balance and pays out rewards. The reason for the absence of this
call is to ensure that no revert can happen upon the emergency
withdrawal.

However, this can be abused by depositing a huge amount and then
emergency withdrawing this amount. In that scenario, the Rewarder
still assumes that the user has a valid stake and will grant rewards even
after the withdrawal.

*This issue has only been rated as medium severity due to the fact that
the emergency mode must be activated.

Recommendations Consider still executing the onReward call. In case of revert one can
simply set the gaugeRewarder to address(0).

Comments /
Resolution

Resolved, the onReward call is being executed. In the case of a failure,
the gaugeRewarder will be deleted.

bailsec.io 14

In any scenario where it will exclusively fail for one transaction, the
rewarder will be set to address(0) and effectively removed. This may
have negative implications if the rewarder is still valid.

It may actually be kept as-is because such a scenario will probably
never occur. However, a better solution would just to empty the catch
and do nothing.

Resolution 2:

The rewarder deletion within the catch block has been removed.

Issue_07 Permanently stuck rewards due to emergencyWithdraw

Severity Medium

Description The Synthetix reward mechanism increases the rewardPerTokenStored
mapping upon every interaction (_deposit, _withdraw, _getReward
and notifyRewardAmount . This means that the rewards are distributed
on every occasion based on the _totalSupply.

Illustrated:

Alice and Bob have both deposited 100 tokens, with a rewardRate of
1e18 and 100 seconds passed. A third address will deposit now, this
will result in rewardPerTokenStored to become 50e18 after 100
seconds, allowing both Alice and Bob to claim 100e18 tokens each. At
this point, Alice and Bob’s rewards are not updated yet, because the
third party deposit will only alter rewardPerTokenStored and not
rewards[Alice]/rewards[Bob].

If Alice invokes the emergencyWithdraw function, this will not alter
rewardPerTokenStored, but still Bob can only claim 100e18 tokens, as
there is no change to Bob’s rewards. Since Alice’s rewards have not

bailsec.io 15

been updated beforehand, she cannot claim these after the
emergency withdrawal, thus rewards being permanently stuck in the
contract.

This is a fundamental difference to the masterchef mechanism as
within the masterchef algorithm, the reward update is handled
differently and lost rewards due to emergency withdrawals are simply
allocated amongst the leftover stakers.

Recommendations Consider incorporating a recover function which allows governance to
withdraw these stuck rewards.

Comments /
Resolution

Resolved, such a function has been implemented. It is however
important to mention that this will not work if the reward token is the
stake token.

bailsec.io 16

Issue_08 Small precision can result in loss of rewards

Severity Informational

Description Currently, rewardPerTokenStored is calculated with a precision of 18
decimals:

(lastTimeRewardApplicable() - lastUpdateTime) * rewardRate * 1e18 /

_totalSupply

If the rewardToken is a token with 6 decimals and the TOKEN is a
token with 18 decimals, this can round to zero in certain
circumstances, preventing the accrual of rewards.

*This issue is only rated as informational because SwapX
(rewardToken) has 18 decimals.

Recommendations Consider increasing the precision to 1e24.

Comments /
Resolution

Acknowledged.

bailsec.io 17

Issue_09 Contract does not work with transfer-tax tokens

Severity Informational

Description This contract is not compatible with transfer-tax tokens. If these token
types are used for any purpose within the contract, this will result in
down-stream issues and inherently break the accounting.

This issue has only been rated as informational because this contract is
only meant to be used with LPTokens.

Recommendations Consider not using such tokens.

Comments /
Resolution

Acknowledged.

bailsec.io 18

GaugeV2_CL

The GaugeV2_CL contract is a simple staking contract that allows users to stake tokens for a
reward token. It employs similar mechanics to the Synthetix Staking Rewards contract with
minor modifications such as an optional rewarder, emergency options and a few other
functionalities

The owner of this contract remains the GaugeFactoryV2_CL contract and can never be
changed.

Notably, the IRewarder interface is not corresponding to the GaugeExtraRewarder within
this scope but rather to another rewarder implementation.

Privileged Functions:

- transferOwnership
- renounceOwnership
- setDistribution
- setGaugeRewarder
- setFeeVaults
- setRewarderPid
- setInternalBribe
- activateEmergencyMode
- stopEmergencyMode
- getReward
- notifyRewardAmount

bailsec.io 19

Issue_10 Governance Privilege: Funds can be permanently locked in the
contract

Severity Governance

Description Currently, governance of this contract has several privileges for
invoking certain functions that can drastically alter the contracts
behavior.

For example: It is possible to add an incompatible ExtraRewarder
which then prevents withdrawals.

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

Issue_11 Incorrect order of operations will dilute rewards in extraRewarder

Severity High

Description Currently, during the _deposit function, tokens are being transferred
into the contract before the onReward function on the extraRewarder
is invoked.

Since the current balance of the Gauge is used as lpSupply divisor in
the ExtraRewarder, this will dilute rewards because it updates the pool
state with the new amount already included in the balance, while in
fact it should update the pool state with the historic balance.

Recommendations Consider executing the onReward call before the transfer.

Comments /
Resolution

Resolved.

bailsec.io 20

Issue_12 claimFees will always revert if one of both token is a transfer-tax token

Severity High

Description The claimFees and corresponding _claimFees function claims the
outstanding balance from the CLFeesVault contract and transfers it to
this contract. The return value of the transferred balance is then
cached into (claimed0, claimed1) and is then distributed to the internal
bribe in the known manner.

A problem arises if one of both tokens is a token with a transfer-tax, as
that would essentially mean that the cached balance does not
correspond to the real received balance and therefore the bribe
distribution always reverts.

This effectively results in a DoS of the claimFees function.

This issue is specifically severe because AMMs are/should usually be
compatible with fee-on-transfer tokens.

Recommendations Consider incorporating a before-after balanceOf check and then only
distribute as much as was received.

Comments /
Resolution

Acknowledged.

bailsec.io 21

Issue_13 Lack of rewarder update during
emergencyWithdraw/emergencyWithdrawAmount allows for unfairly
stealing majority of rewards from GaugeExtraRewarder

Severity Medium

Description ExtraRewarders work in a very specific way: They use the latest
provided balance of a user to determine rewards for the given time
period.

Illustrated:

a) Alice deposits 100e18 tokens at TS = 10_000
b) Alice withdraws 50e18 tokens at TS = 20_000
c) Alice will receive rewards based on 10_000 seconds and 100e18
tokens

During the emergencyWithdraw and emergencyWithdrawAmount
functions, there is no such onReward call to the ExtraRewarder that
adjusts the balance and pays out rewards. The reason for the absence
of this call is to ensure that no revert can happen upon the emergency
withdrawal.

However, this can be abused to deposit a huge amount and then
emergency withdraw this amount. In that scenario, the ExtraRewarder
still assumes that the user has a valid stake and will grant rewards even
after the withdrawal.

*This issue has only been rated as medium severity due to the fact that
the emergency mode must be activated.

Recommendations Consider still executing the onReward call. In case of revert one can
simply set the gaugeRewarder to address(0).

Comments /
Resolution

Resolved, it seems that the recommendation was misunderstood here.
The idea was that governance will set the rewarder to address(0)

bailsec.io 22

manually in such a scenario.

Consider removing this delete call.

Resolution 2:

The delete call has been removed. Governance will manually set the
gaugeRewarder to address(0).

Issue_14 Permanently stuck rewards due to emergencyWithdraw

Severity Medium

Description The Synthetix reward mechanism increases the rewardPerTokenStored
mapping upon every interaction (_deposit, _withdraw, _getReward
and notifyRewardAmount). This means that the rewards are distributed
on every occasion based on the _totalSupply.

Illustration:

Alice and Bob have both deposited 100 tokens, with a rewardRate of
1e18 and 100 seconds passed. A third address will deposit now, this
will result in rewardPerTokenStored to become 50e18 after 100
seconds, allowing both Alice and Bob to claim 100e18 tokens each. At
this point, Alice and Bob’s rewards are not updated yet, because the
third party deposit will only alter rewardPerTokenStored and not
rewards[Alice]/rewards[Bob].

If Alice invokes the emergencyWithdraw function, this will not alter
rewardPerTokenStored, but still Bob can only claim 100e18 tokens, as
there is no change to Bob’s rewards. Since Alice’s rewards have not
been updated beforehand, she cannot claim these after the
emergency withdrawal, thus rewards being permanently stuck in the
contract.

bailsec.io 23

This is a fundamental difference to the masterchef mechanism as
within the masterchef algorithm, the reward update is handled
differently and lost rewards due to emergency withdrawals are simply
allocated amongst the leftover stakers.

Recommendations Consider incorporating a recover function which allows governance to
withdraw these stuck funds.

Comments /
Resolution

Resolved, such a function has been implemented. It is however
important to mention that this will not work if the reward token is the
stake token.

Issue_15 Small precision can result in loss of rewards

Severity Informational

Description Currently, rewardPerTokenStored is calculated with a precision of 18
decimals:

(lastTimeRewardApplicable() - lastUpdateTime) * rewardRate * 1e18 /
_totalSupply

If the rewardToken is a token with 6 decimals and the TOKEN is a
token with 18 decimals, this can round to zero in certain
circumstances, preventing the accrual of rewards.

*This issue is only rated as informational because SwapX
(rewardToken) has 18 decimals.

Recommendations Consider increasing the precision to 1e24.

Comments /
Resolution

Acknowledged.

bailsec.io 24

Issue_16 Contract does not work with transfer-tax tokens

Severity Informational

Description This contract is not compatible with transfer-tax tokens. If these token
types are used for any purpose within the contract, this will result in
down-stream issues and inherently break the accounting.

This issue has only been rated as informational because this contract is
only meant to be used with non-transfer tax tokens.

Recommendations Consider not using such tokens.

Comments /
Resolution

Acknowledged,

Issue_17 GaugeRewarder cannot be set back to address(0) once set

Severity Low

Description The setGaugeRewarder function allows the contract owner to set a
corresponding rewarder. However, once this variable is set, it cannot
be set back to address(0), which will then further disturb the business
logic because at some point a dummy contract needs to be deployed
and set.

Recommendations Consider allowing the setting of gaugeRewarder back to address(0).

Comments /
Resolution

Resolved.

bailsec.io 25

GaugeExtraRewarder

The GaugeExtraRewarder contract is a simple rewarder contract which is meant to be
employed on top of staking contracts with a matching interface. Its sole purpose is to distribute
an additional reward token on top of the standard staking protocol and it incorporates the
standard Masterchef reward algorithm for that purpose

Contrary to the traditional ExtraRewarder, this contract employs a setDistributionRate function
which allows the owner to set a rewardRate for a determined period, which is one week.

Illustrated this means if the setDistributionRate function is invoked on TS = 1716422400 with
amount = 604800e18, this will distribute 1e18 tokens per second for one week with the
lastDistributedTime being set to 1717027200. Once the lastDistributedTime is exceeded, no
further rewards are distributed until the owner again invokes the setDistributionRate function.

Tokens are meant to be transferred directly to the contract before the setDistributionRate
function has been called.

Privileged Functions:

- transferOwnership
- renounceOwnership
- setDistributionRate
- recoverERC20

bailsec.io 26

Issue_18 Reentrancy vulnerability allows for draining rewards if rewardToken is
ERC777 token or token with a hook

Severity High

Description The onReward function allows for distributing reward tokens to a
recipient.

This is done in such a manner that the rewardToken is transferred out
before the new rewardDebt is set.

This wrong order of operations allows a malicious user to reenter into
the gauge’s original deposit/withdraw/getReward/whatever function (if
it is not guarded) and then trigger the onReward function again,
effectively withdrawing the same amount of rewards over and over
again.

Recommendations Consider using a nonReentrant modifier

Comments /
Resolution

Resolved. However, it was not resolved as per our recommendation.

The used implementation will not work for tokens that revert upon
zero-transfers.

Consider implementing an if condition and only execute the transfer if
the pending amount is in fact non-zero

bailsec.io 27

Issue_19 Low precision will result in loss of rewards for reward tokens with 6
decimals

Severity High

Description Currently, the accRewardPerShare is calculated with a precision of 12
decimals:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Ga
ugeExtraRewarder.sol#L165

If the rewardToken has 6 decimals and the stakingToken has 18
decimals, this will not work:

accRewardPerShare = accRewardPerShare + (reward *
(ACC_TOKEN_PRECISION) / lpSupply);

100e6 * 1e12 / 1 000 000e18 = 0

*This issue is rated as high severity because the low precision of 12
decimals will render rewards for tokens with 6 decimals completely
unusable.

Recommendations Consider using 1e24 as a precision factor.

Comments /
Resolution

Acknowledged.

bailsec.io 28

Issue_20 Recovery of tokens not possible if block.timestamp >=
lastDistributedTime

Severity Low

Description Primary, the recoverERC20 function is responsible for recovering
tokens that have been allocated as reward tokens, as this will decrease
rewardPerSecond accordingly.

However, there is also the possibility to recover tokens which have
been sent to the contract by accident (including the rewardToken).

This will only work as long as the reward epoch has not been
exceeded, otherwise the function will revert due to an underflow:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Ga
ugeExtraRewarder.sol#L184

which will essentially prevent to rescue rewardTokens which have not
been allocated as reward but rather were received by a donation.

Recommendations Consider implementing a special condition for that scenario which still
allows to recover the rewardToken.

Optionally it is also possible to just call setDistributionRate with amount
= 0, which then sets rewardPerSecond to zero and therefore
circumvents the above mentioned condition.

Comments /
Resolution

Acknowledged.

bailsec.io 29

CLFeesVault

The CLFeesVault contract is a simple storage contract that receives token0/token1 from the
corresponding ICHI implementation. These fees will then be claimed by the Gauge contract and
further distributed to the corresponding Bribe contract.

Privileged Functions:
- setVoter
- setPermissionRegistry
- setPool
- emergencyRecoverERC20

No issues found.

bailsec.io 30

CLFeesVault2

The CLFeesVault2 contract is a simple storage contract that receives token0/token1 from the
AlgebraCommunityVault. These fees will then be claimed by the Gauge contract and further
distributed to:

a) Dibs (83.3%)
b) swpxNftStakingConverter (16.7%)

Privileged Functions:

- setDibs
- setNftStaking
- setPairFactory
- setVoter
- setPermissionRegistry
- setPool
- emergencyRecoverERC20
- claimFees

No issues found.

bailsec.io 31

Core

VotingEscrow

Disclaimer: The checkpoint and delegation algorithm is not included in the audit scope. It
is expected that these work flawlessly and are robust against manipulation.

The VotingEscrow contract is the heart of the VE implementation. It allows users to lock their
SwapX tokens for a specified amount of time in exchange for a NFT that represents voting
power. The higher the balance and the higher the lock duration, the higher the voting power.
The VE contract allows users a variety of interactions:

a) deposit_for: Add value to an existing tokenId (no limitation)
b) create_lock: Lock tokens for a specific amount of time and receive a tokenId as receipt

which reflects the VP
c) create_lock_for: Similar to create_lock but allows for an arbitrary recipient of the tokenId
d) increase_amount: Add value to an existing tokenId (must be approved for this tokenId or

owner)
e) increase_unlock_time: Increase the time when the tokenId is unlocked. This will increase

the VP (must be approved for this tokenId or owner)
f) withdraw: Allows to withdraw an unlocked tokenId
g) merge: Allows to merge two owned or approved tokenIds
h) split: Allows to split an approved or owned tokenId to multiple new tokenIds

Once users have received their tokenIds, they will automatically receive rewards from the
RewardsDistributor contract and are additionally able to vote for gauges where votes will
become eligible for additional rewards (bribes).

Additionally, the contract offers a delegation mechanism which allows to delegate the VP to an
arbitrary address. However, this logic was never used in the past and is also not used in this
architecture. It is also not deemed as bug-free. Similar to the delegation mechanism, are the
view functions not bug-free, which allow to fetch VP or the supply at a specific block.number,
as this can become inaccurate due to the extrapolation approach. This logic however also
remains unused.

bailsec.io 32

Appendix: Checkpoint Algorithm

The checkpoint logic is inspired from Curve’s VE implementation and essentially decays a
tokenId’s VP over time. Initially the VP can be as high as the nominal locked token amount, if
locked for 2 years. If however tokens are not fully locked for four years, the initial VP will be
calculated as follows:

amountToLock * (lockEndTs - currentTs) / 2 years

This means if a user only locks his tokens for 1 year, the VP will initially be 50% of the locked
amount and decay linearly with the increase of currentTs.

To facilitate this mechanism, a sophisticated algorithm was implemented which keeps track of:

a) A tokenId’s point at specific epochs (usually whenever the tokenId was deposited or
manipulated). If for example a tokenId is created via a lock, the following variables are saved:

user_point_history[epoch]

- bias: slope * (lockedEndTs - currentTs)
- slope: amountToLock / 4 years
- ts: timestamp of tokenId creation
- blk: block.number of the tokenId creation

 Whenever now the VP of this tokenId is fetched, this is simply done as:

 lastPoint.bias -= slope * (currentTs - lastPoint.ts)

 Which simply decays the bias over time, while using the initial bias and currentTs,
indicating a decreased VP value over time.

b) The totalSupply of all tokenIds. This is facilitated in:

 point_history[epoch]

- bias: decreased over time in similar fashion as above, aggregates bias from all
tokenIds

bailsec.io 33

- slope: aggregates slopes from all tokenIds, decreased whenever a tokenId’s lock has
surpassed

- ts: timestamp of last update for global supply
- blk: block.number of last update for global supply

The usual epoch duration is one week and this algorithm ensures that a tokenId always displays
the correct VP, the total aggregated VP forms the totalSupply and the totalSupply and tokenId
VPs are steadily decreasing.

Out of scope changes:

- Implementation of cross-contract claim call to RewardDistributor

Privileged Functions:

- setTeam
- setArtProxy
- setVoter
- voting
- abstain
- attach
- detach

bailsec.io 34

Issue_21 Governance Privilege: Storage control

Severity Governance

Description Currently, governance of this contract has several privileges for
invoking certain functions that can drastically alter the contracts
behavior.

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

Issue_22 Burning tokenId will permanently lock reward tokens in
RewardsDistributor

Severity High

Description The RewardsDistributor contract distributes rewards for tokenIds
based on their VP and the overall VP, each epoch.

Rewards can therefore only be fetched for the corresponding tokenId
and will either be transferred to the current owner or added towards
the tokenId:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Re
wardsDistributor.sol#L292

If a tokenId is burned without the corresponding rewards being
claimed beforehand, these rewards are essentially stuck forever in the
RewardsDistributor contract.

This issue is also present for merge and split.

bailsec.io 35

Recommendations An isolated fix would be to establish an interconnection between the
VotingEscrow and the RewardsDistributor that automatically claims all
rewards before the tokenId is burned.

However, due to the fact that this codebase is widely used and battle-
tested, and this change is quite intrusive, it is important to weigh the
issue severity vs security benefits of a battle-tested codebase.
Therefore we come to the conclusion that a simple frontend notice
which raises awareness for users to claim rewards shall be sufficient

Comments /
Resolution

Failed resolution.

Within the split/withdraw/merge functions, a claim call to the
RewardsDistributor is invoked. While we have specifically mentioned
that we do not recommend such a fix, it still has been implemented.

During our validation it was investigated that this will expose a problem
because the withdraw call will revert if block.timestamp = _locked.end.

The reason for this is because at this timestamp, it will invoke the
deposit_for function which will then revert due to the reentrancy
check:

https://github.com/SwapX-Exchange/contracts-
rb/blob/88fdbc4420e4bd176ef9acd69a1a56827489ef13/contracts/Re
wardsDistributor.sol#L296

This edge-case highlights once again the mandatory carefulness when
implementing changes. Therefore we recommend sticking to our
previous recommendation to reverse this change and stick to a
frontend notice.

This moreover just highlights the need for sufficient testing, as this
issue would most probably have been caught by testing edge-cases.

bailsec.io 36

Resolution 2:

This call has been removed. It is advised to notify users on the frontend
that they should manually claim any unclaimed rewards.

Issue_23 Merge allows to bypass expiry safeguards

Severity Low

Description The merge function allows to merge two tokenIds into one tokenId.

More specifically, it allows for burning one tokenId and adding the
value to another tokenId. When doing this, the larger of both
unlockTimes is used, which prevents a trick to withdraw a tokenId
earlier than the unlockTime.

Upon careful inspection of the codebase, one realizes that it is not
allowed to further extend an expired tokenId, nor add value to it:

a) https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
tingEscrow.sol#L778

b) https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
tingEscrow.sol#L829

c) https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
tingEscrow.sol#L844

This safeguard can be bypassed by using the merge function, which
now simply allows to add an expired lock to a non-expired lock or to

https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L778
https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L778
https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L778
https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L829
https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L829
https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L829
https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L844
https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L844
https://github.com/SwapX-Exchange/contracts-rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/VotingEscrow.sol#L844

bailsec.io 37

increase the value of an expired lock.

We could however not determine any negative side-effects from that
behavior.

Recommendations An isolated fix would be to ensure that both tokenIds (_from and _to)
are not expired.

However, due to the fact that this codebase is widely used and battle-
tested, and this change is quite intrusive, it is important to weigh the
issue severity vs security benefits of a battle-tested codebase.
Therefore we come to the conclusion that a simple frontend notice
which raises awareness for users to claim rewards shall be sufficient

Comments /
Resolution

Acknowledged.

Issue_24 Incorrect supply update during merge will falsify supply

Severity Low

Description Whenever two tokenIds are merged, the tokenId “_from” is reset and
burned. The value of this tokenId is then attached to tokenId “_to”,
which increases the overall supply:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
tingEscrow.sol#L731

However, the supply is not decreased beforehand within the merge
function, which will effectively incorrectly inflate the supply everytime a
merge happens.

Fortunately, this issue does not have an impact as the supply variable

bailsec.io 38

is not actively used for business logic purposes, hence this issue is only
rated as a low severity.

Recommendations Consider decreasing the supply before _checkpoint and _burn is
invoked.

Comments /
Resolution

Resolved.

Issue_25 Unsafe casting to int128 can result in loss for users

Severity Low

Description Within the codebase there are several unsafe castings to int128,
notably during the deposit interaction towards a position:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
tingEscrow.sol#L735

This will not work for amounts which are larger than int128. However,
in this architecture this issue can be safely ignored because the SWPX
token will never have such a large supply.

Recommendations Consider acknowledging this issue.

Comments /
Resolution

Acknowledged.

bailsec.io 39

VoterV3

The VoterV3 contract is the entry contract which orchestrates the voting mechanism. Whenever
a new epoch has started, which is each Thursday 00:00 UTC, users can vote with their tokenId
for one or more gauges. Voting will have the following benefits:

a) Allocates rewards to gauges based on the % of the overall allocated VP
b) Receive rewards in form of swap fees and external bribes

Votes in epoch x are casted for epoch x and once epoch x has surpassed (epoch x+1 is
initiated), the rewards will be allocated accordingly to gauges based on the VP weights. Users
can vote anytime during an epoch and are also able to abstain their votes which have already
been made.

To facilitate same votes for subsequent epochs the contract exposes a poke function which
simply uses the previous vote configuration for subsequent epochs.

Contrary to Thena’s implementation, only privileged addresses can create new gauges which
greatly limits the existence of low quality gauges and reduces the risk of the distributeAll
function to run out of gas.

Existing gauges can be killed and revived which means they can be excluded from voting or
included again, per desire of governance.

Whenever an epoch has been surpassed, the next epoch update is facilitated in the Minter
contract which then invokes the notifyRewardAmount function to initiate the reward distribution
towards the different gauges.

Privileged Functions:

- transferOwnership
- renounceOwnership
- setVoteDelay
- setMinter
- setBribeFactory
- setPairFactory

bailsec.io 40

- setPermissionsRegistry
- setNewBribes
- setInternalBribeFor
- setExternalBribeFor
- addFactory
- replaceFactory
- removeFactory
- whitelist
- blacklist
- killGauge
- reviveGauge
- createGauges
- createGauge

Out of scope changes:

- Refactoring of the isAlive logic (includes several implications on the contract
such as during _updateForAfterDistribution)

- removal of whitelist/blacklist mechanism

As per our guidelines, it is strongly discouraged to make out of scope changes. This is
underlined by the error which has been introduced within the VotingEscrow contract for
the claim call during the “withdraw” function. These changes should be reversed and the
contract shall be submitted for revalidation.

bailsec.io 41

Issue_26 Governance Privilege: Storage manipulation

Severity Governance

Description Currently, governance of this contract has several privileges for
invoking certain functions that can drastically alter the contracts
behavior.

For example, Bribes can be changed which will then prevent any
_reset call, thus resulting in permanently used tokenIds, or the
gaugeFactory can be changed which means the approval of a newly
created gauge could be done to a malicious gauge.

Furthermore, it is used under a proxy contract.

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

bailsec.io 42

Issue_27 Flaw within _reset incorrectly reduces allocation in bribe

Severity High

Description Whenever the _reset function is invoked, this will withdraw the
corresponding amount from both Bribe contracts:

IBribe(internal_bribes[gauges[_pool]])._withdraw(uint256(_votes[i]),

_tokenId);

IBribe(external_bribes[gauges[_pool]])._withdraw(uint256(_votes[i]),

_tokenId);

The problem hereby is that this also happens in the scenario where the
tokenId has no allocation in the current epoch.

This will result in two problems:

Issue A:

Users can abuse this flaw to steal rewards from the gauge by first
voting with a tokenId with a higher allocation and then resetting the
previous tokenId which was deposited one epoch before. This allows
to then again abandon the vote with the more valuable tokenId
without reducing the allocation due to withdraw amount being larger
than the balance:

if (amount <= _balances[_owner][_startTimestamp])

Illustrated:

1. Alice votes with tokenId = 1 with a low value (1 WEI) during epoch 10

2. Alice votes with tokenId = 2 with a large value (100_000e18) during
epoch 11, this will set the balance on the Bribes contracts to
100_000e18:

bailsec.io 43

_balances[_owner][_startTimestamp] = _lastBalance + amount;

3. Alice calls reset with tokenId = 1, due to the blunder, it will decrease
the balance in the Bribes contract to 100_000e18 -1:

IBribe(internal_bribes[gauges[_pool]])._withdraw(uint256(_votes[i]),

_tokenId);

4. Alice now calls reset with tokenId = 2, the tokenId is now free’d up
but the balance in the Bribes contract is not decreased because in
step 3, the balance has been decreased by 1 we and the if-clause is
not triggered:

if (amount <= _balances[_owner][_startTimestamp])

Issue B:

A user’s allocation will be unlawfully reduced if a tokenId that has a
previous allocation is withdrawn or used for another gauge voting.

Illustrated:

1. Alice votes with tokenId = 1 which is worth 100e18 for Gauge
SWPX/ETH (epoch 10)

2. Alice votes with tokenId = 2 which is worth 110e18 for Gauge
SWPX/ETH (epoch 11)

-> she will receive a balance of 110e18 on the corresponding bribes

3. Alice votes with tokenId = 1 which is worth 100e18 for Gauge
SWPX/USDC (epoch 11)

-> due to the _reset call, it will unlawfully reduce the allocation which

bailsec.io 44

Alice has gained in the previous step, effectively reducing her balance
to 10e18.

Recommendations Consider not withdrawing an allocation from a gauge if a tokenId has
not yet voted in the current epoch. This can be trivially done by
wrapping the withdraw call into this if-clause:

if(lastVoted[_tokenId] > _time)

Comments /
Resolution

Resolved.

bailsec.io 45

Issue_28 Loss of distributed rewards if no votes occurred during one epoch

Severity High

Description Whenever a new epoch has started, rewards for the last epoch’s votes
are distributed via the Minter which invokes notifyRewardAmount:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L686

This will then increase the index using the reward per weight scheme:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L695

The problem: If no votes have occurred during the past epoch, this
means the index will not be increased thus no rewards are allocated.
However, they are still being transferred into the contract:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L688

Which now results in these tokens being stuck.

Recommendations Consider simply incorporating a recoverERC20 function that allows
for recovering stuck funds. This is also helpful with regards to another
issue.

Comments /
Resolution

Resolved.

bailsec.io 46

Issue_29 Kill and revive of gauge in same epoch will break accounting

Severity High

Description Consider the scenario where we are in a running epoch and votes
have already been casted to different gauges, this will have the
following storage impact:

weightsPerEpoch[time][gauge] = VP
votes[voter][gauge] = VP
totalWeightsPerEpoch[time] = VPAggregated

Most importantly is the totalWeightsPerEpoch mapping, as this will be
used for the index calculation within notifyRewardAmount when a new
epoch is introduced:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L691

If a gauge is now killed, the totalWeightsPerEpoch mapping is
decreased with the corresponding VP which was allocated to this
gauge during the current epoch:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L327

This is correct because this gauge should not get an allocation.

Several problems will now arise if a gauge is revived in the same
epoch, because this will not increase the totalWeightsPerEpoch
mapping back to the old value but the individual gauge weight is still
existent (weightsPerEpoch)

bailsec.io 47

1) Upon the distribution (after the epoch update), this means that the
gauge will still get an allocation (due to the still existing
weightsPerEpoch mapping) but the index variable was not correctly
adjusted (due to the missing increase of totalWeightsPerEpoch when
the gauge is revived). Therefore, the index is larger as expected and
tries to distribute more rewards than received.

2) if users _reset their votes (in the same epoch), this will decrease the
totalWeightsPerEpoch mapping by the amount of VP that was
allocated to the gauge:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L393

This is wrong because it was already decreased due to the kill
interaction. This could even prevent _reset due to an underflow revert.

3) If the gauge will be revived and killed again, this will decrease
totalWeightsPerEpoch[time] twice.

Recommendations Consider not allowing to kill and revive a gauge in the same epoch. A
simple mapping hasGaugeKilled[gauge] = epoch can be used for that
purpose.

Comments /
Resolution

Failed resolution, the isAlive logic has been completely refactored
without us recommending it, this introduces redundant complexity
which can be avoided.

We recommend to do the following steps:

a) Reverse all changes corresponding to the isAlive logic
b) Simply use a hasGaugeKilled[gauge] = epoch mapping which is set
whenever the gauge is killed and is used during the reviveGauge
function as safeguard.

bailsec.io 48

This recommendation is not optional but mandatory since the
isAlive logic is also used in further places.

Resolution 2:

The recommended fix has been introduced.

Issue_30 Accounting will be broken if not all gauges are updated

Severity Medium

Description Whenever rewards are provided via the notifyRewardsAmount
function, this will increase the index variable using the token per
weight approach:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L697

This essentially means indexIncrease * totalWeight = providedReward

Once this has happened, the next step is to invoke
distribute/distributeAll, which allocates the calculated rewards based
on the overall votes and each gauges votes:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L764

The calculation for this is trivially done by multiplying the gauges votes
with the index, as this will now yield how much tokens will be allocated
to each specific gauge:

https://github.com/SwapX-Exchange/contracts-

bailsec.io 49

rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L793

The problem with this flow is the assumption that each gauge is
updated after an epoch has passed, this is however not guaranteed as
there is simply no check in the contract which ensures this.

Therefore, if a gauge is not updated, this will not set
supplyIndex[gauge] to the most recent index and therefore the share
calculation during the update in the next round is flawed.

Consider the following PoC:

1) There are currently two gauges:

 WETH/USDC
 WBTC/USDC

both gauges have received a VP of 50

2) update_period is invoked which then updates the index based on
the totalWeight and the amount of rewards:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L697

For simplicity reasons let's just consider that there are 100e18 reward
tokens and a totalWeight of 100e18, this will set index to 1e18

Therefore, if _distribute is invoked, both gauges would receive 50e18
tokens:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo

bailsec.io 50

terV3.sol#L793

and supplyIndex[gauge] is updated afterwards

3) Now the WBTC/USDC gauge is not distributed within this epoch
and therefore the supplyIndex of this gauge is not updated, it is still
zero.

4) For the next period, we have 100e18 reward tokens and solely the
WBTC/USDC vault got an allocation of 100e18 VP. Therefore, index is
set to 1e18+1e18:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L697

5) The distribute function is now invoked for the WBTC/USDC vault:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L793

remember, how the gauge got an allocation of 100e18 for the second
period and how the index = 2e18 but supplyIndex for this gauge is
zero (due to the fact that it was not updated in the last epoch).

This will effectively attempt to distribute 200e18 tokens to the
WBTC/USDC gauge, while the gauge should effectively only receive
50e18 (epoch 1) and 100e18 (epoch 2).

This will break the whole mechanism.

*This issue is rated as medium severity only because only privileged
addresses can create new gauges.

bailsec.io 51

Recommendations Due to the fact that only privileged addresses can create new gauges,
the risk of this issue happening is greatly limited. Additionally we
recommend keeping an off-chain system which ensures that no gauge
remains undistributed (similar to what Thena does).

Comments /
Resolution

Acknowledged.

Issue_31 Killing gauge after index increase will result in stuck funds

Severity Medium

Description Whenever a new epoch is introduced, this will invoke the
notifyRewardAmount function that then increases the index. This flow
was already explained multiple times during this report.

It is a valid scenario that not immediately all gauges are “distributed”
after the index has increased. Specifically, it is possible to kill a gauge
after the index has increased.

If now a gauge is successfully killed, this means that isAlive[gauge] is
set to false. This has the following impact whenever the gauge is now
updated:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
terV3.sol#L794

claimable[gauge] is not increased, thus no rewards will be sent to the
gauge. This is totally fine as the gauge was killed and should not
receive any rewards.

However, these rewards simply remain stuck permanently in the
VoterV3 contract.

bailsec.io 52

Recommendations Consider simply incorporating a recoverERC20 function that allows
for recovering stuck funds.

Comments /
Resolution

Acknowledged.

Issue_32 Inconsistency in Masterchef interaction

Severity Low

Description Upon the distributeAll function, an external updatePool call to the
Masterchef is executed. This call is however not executed upon any
other function. In the worst case scenario, an epoch is updated using
the distribute function instead of the distributeAll function, which
would then not update the Masterchef.

Recommendations The Masterchef is not in the current scope but will be part of the next
iteration, therefore we cannot fully determine the impact but still
recommend to execute the updatePool call on both distribute
functions as well.

Comments /
Resolution

Resolved.

bailsec.io 53

Issue_33 replaceFactory function is flawed

Severity Low

Description The replaceFactory function is used to add a new gauge and pair
factory to the position of an existing gauge and pair factory. This is
simply done by replacing it.

The validation is however incorrect, as it ensures that the newly added
factories are already existent, which is wrong:

require(isFactory[_pairFactory], '!fact');
require(isGaugeFactory[_gaugeFactory], '!gFact');

Thus this function will never work.

Recommendations Consider inverting the checks.

Comments /
Resolution

Resolved.

bailsec.io 54

Issue_34 Change of internal_bribe assignment may leave internal_bribe in
corresponding gauge unchanged

Severity Informational

Description Governance of this contract can change the internal_bribe assignment
for a gauge which means that vote deposits and withdrawals will be
forwarded to a different gauge than initially configured.

The problem hereby is that each gauge will allocate swap fees to the
internal_bribe in the Gauge’s storage. This can easily result in an
inconsistency where the Gauge’s internal_bribe remains unupdated
and keeps distributing rewards to the old Bribes contract instead of
the new one.

Recommendations Consider keeping this fact in mind and manually update the gauge’s
internal_bribe as well.

Comments /
Resolution

Acknowledged.

bailsec.io 55

Issue_35 Contract is not compatible with transfer-tax tokens

Severity Informational

Description This contract is not compatible with transfer-tax tokens. If these token
types are used for any purpose within the contract, this will result in
down-stream issues and inherently break the accounting.

*This issue is only rated as informational because the SwapX token has
no transfer-tax.

Recommendations Consider not using these tokens.

Comments /
Resolution

Acknowledged.

bailsec.io 56

MinterUpgradeable

The MinterUpgradeable contract handles the emission calculation and distribution of the SwapX
token. Whenever a new epoch is started, tokens are distributed in the following manner:

a) The initial distribution of tokens per epoch is 2_000_000 SwapX token, which is
decreased by 1% every epoch

b) Between 10% and 30% goes to the RewardDistributor, this will start with 1% and
increases every epoch by 10 BPS

c) Between 3% to 5% goes to the team, whereas in the first 12 weeks this will distributed to
the Masterchef

d) Between 5% to 10% goes to the referralAddress
e) The leftover will be distributed towards all Gauges, which is between 91% and 82% of

the overall weekly emissions.

It is important to mention that the Minter is the only contract that can update epochs and all
other contracts in the architecture (VoterV3, GaugeV2, Bribes, RewardsDistributor) are only
following the epoch update of the Minter contract. Epoch updates are permissionless but for
ideal execution the update_period should be triggered via VoterV3.distributeAll at the very first
block whenever a new epoch has started, which is always Thursday 00:00 UTC.

Privileged Functions:

- transferOwnership
- renounceOwnership
- startEpoch
- setTeam
- acceptTeam
- setVoter
- setTeamRate
- setEmission
- setReferralRate
- setReferralAddress
- setRewardDistributor

bailsec.io 57

Issue_36 Governance Privilege: Governance can steal all minting rewards

Severity Governance

Description Currently, governance of this contract has several privileges for
invoking certain functions that can drastically alter the contracts
behavior.

This includes setting the voter variable to any address which then
allows for stealing rewards which are meant to be distributed to
gauges.

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

Issue_37 Emissions can be changed in hindsight via setEmission function

Severity Medium

Description The setEmission function allows for altering the EMISSION parameter.
This can be done while an epoch update is outstanding which will
essentially alter the reward emission for the outstanding epoch as well
and not only for future epochs.

Recommendations Consider invoking update_period before the EMISSION variable is
adjusted.

Comments /
Resolution

Resolved.

bailsec.io 58

Bribes

The Bribe contract is a simple distribution contract which is inherently connected to the VoterV3
contract. Each Bribe contract is linked to a specific gauge and whenever users vote for this
gauge, they will gain an allocation in the Bribe contract.

The contract owner can add one or more tokens as reward tokens which then allows anyone to
deposit these into the Bribe contract. The idea behind this scheme is to incentivize votes for a
specific Gauge. A famous example is the Overnight protocol, which regularly bribes their pools
in an effort to increase the votes towards their pools.

The whole mechanism is epoch based, which means when users vote during epoch 1, their
allocation will be assigned towards epoch 2 and claimable once epoch 2 has been surpassed.

As the reward mechanism, this contract uses a trivial RPT (reward per token) algorithm which
then distributes the bribed rewards on a pro-rata base of the overall assigned VP for each
specific Bribe contract.

There are several mechanisms to claim rewards, either directly via the getReward function or via
the VoterV3 contract as an interface. The latter mechanism is just exposed as a nice-to-have
feature without an essential need.

Privileged Functions:

- addRewards
- addReward
- recoverERC20AndUpdateData
- emergencyRecoverERC20
- setVoter
- setMinter
- setOwner

bailsec.io 59

Issue_38 Governance Issue: Contract owner has full control over reward tokens

Severity Governance

Description Currently, governance of this contract has several privileges for
invoking certain functions that can drastically alter the contracts
behavior.

As an example, governance can simply withdraw all reward tokens via
the emergencyRecoverERC20 function.

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

Issue_39 Lack of compatibility with transfer-tax tokens will break reward
accounting

Severity High

Description Currently, rewards can be allocated via the notifyRewardAmount
function. This function is widely known from the Synthetix Staking
Rewards implementation and was modified in such a manner to
allocate the deposited rewards for the next upcoming epoch. This
functionality however exposes a problem: It does not account for
transfer tokens.

Therefore, the contract will attempt to distribute more tokens than
initially received, rendering the last claim unsuccessful.

Recommendations Consider incorporating the before-after scheme.

Comments /
Resolution

Acknowledged.

bailsec.io 60

Issue_40 Contract design is vulnerable to whale tricks

Severity Medium

Description Currently, if deposit and reward allocations are made in epoch 1, these
are immutable once the epoch has surpassed. Such a design is
vulnerable to the following PoC:

1) Alice is a VESwapX whale and has a majority of the VP, she wants
Gauge B to receive a majority of the votes but is also a reward hunter.
2) Gauge A and Gauge B both have a relative amount of reward
tokens.
3) Alice votes for Gauge A, taking a majority of the pool size. This
behavior will disincentivize other users to vote for Gauge A because
they will realize that Alice gets a majority of the rewards, hence Gauge
A will not receive many votes
4) In the last block before the epoch is incremented, Alice votes with a
part of her allocated VP for Gauge B

This behavior results in Alice receiving a majority of bribes for Gauge A
due to the fact that users are disincentivized to vote for the said Gauge
and additionally Alice will receive a normal share of rewards for Gauge
B.

*This issue can also be transmitted to the VoterV3 contract.

Recommendations An isolated fix for this issue would be to not allow users to change
their votes a specific time frame before an epoch has surpassed (12
hours as example).

However, due to the fact that this codebase is widely used and battle-
tested, it is important to weigh the issue severity vs security benefits of
a battle-tested codebase. Therefore we come to the conclusion that
this issue can be safely acknowledged as it is just part of the design
choice.

bailsec.io 61

Comments /
Resolution

Acknowledged.

Issue_41 Insufficient precision can result in down-rounding and loss of rewards

Severity Low

Description Currently the contract uses 18 precision for the reward calculation:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Bri
bes.sol#L218

if the rewardToken has 6 decimals but the staking token 18 (or even
more), this can quickly result in rewards rounding to zero.

Example:

rewardsPerEpoch[epoch] = 100e6
precision = 1e18
_totalSupply[epoch] = 1_000_000e18

90e6 * 1e18 / 100_000_000e18 = 0.9

Therefore, no rewards will be distributed for this epoch.

Recommendations Consider increasing the precision to 1e24 (rewardPerToken &
_earned).

Comments /
Resolution

Resolved.

bailsec.io 62

Issue_42 totalSupply function incorrectly fetches past supply

Severity Low

Description The totalSupply function is meant to fetch the current supply, similar to
the balanceOf and balanceOfOwner functions. This should be done by
using getNextEpochStart as the timestamp since the current supply is
increased for the next epoch upon deposits.

However, it wrongly uses the currentEpochStart as timestamp, thus
resulting in an incorrect return value.

Recommendations Consider being consistent and invoking getNextEpochStart for the
timestamp caching.

Comments /
Resolution

Resolved.

bailsec.io 63

MonolithicVoter

The MonolithicVoter contract serves as an interface to interact with the VoterV3 and
VotingEscrow for specific tokenIds. This contract essentially hosts the privileges for all project
partners, ensuring that no sudden disruptions can happen due to the fact that tokenIds are
custodied.

To employ this logic the contract must be the owner of the specific tokenId and the operator
can assign a specific designated address to each tokenId.
This address can then vote for whitelisted pools and will receive rewards. It is furthermore also
possible for the operator to remove the assignment or transfer the tokenId completely out of the
contract (revoke).

There are two whitelist mechanisms:

a) Global Whitelist: Any pool address on this whitelist can be used as VP recipient for any
vote.

b) Partner Whitelist: Each tokenId has a unique assigned whitelist which allows the voting
for pools on this whitelist by the corresponding tokenId.

Both whitelists are inclusive which means a tokenId can vote for a whitelisted pool on any of
these lists. These are solely settable by the contract operator.

The following functions are permissionless callable once the tokenId has been transferred to the
MonolithicVoter:

a) claimVoterRewards: This function simply claims any outstanding bribe rewards to the
designated address for each tokenId

b) poke: This function allows to repeat the previous round’s vote configuration and votes for
the current round

c) claimRebases: This function simply claims any outstanding rewards from the
RewardsDistributor contract for each tokenId

d) extend: This function allows to extend a tokenIDs lock duration to the maximum lock
duration of two years. Once per round.

e) maintenance: Aggregates claimRebases, extend and poke into one call

bailsec.io 64

Privileged Functions:
- assign
- setName
- setOperator
- setMultisig
- setWhitelisted
- removeWhitelisted
- setWhitelistForPartner
- removeWhitelistForPartner
- revoke
- elevatedClaimVoterRewards
- execute

bailsec.io 65

Issue_43 Poke function can be griefed to lower VP

Severity Medium

Description The poke function allows anyone to repeat the latest vote
configuration. This can be abused to decrease the overall VP.

If we take a look at the _balanceOfNFT function, we realize that the VP
not only decreases with each epoch but also inside each epoch. It
basically decreases with each second that has passed:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Vo
tingEscrow.sol#L924

This fact can be abused by malicious actors to invoke the poke
function at the very end of an epoch, thus decreasing the VP
compared to the initial poke at the beginning of the epoch.

Recommendations Consider only allowing to poke once per epoch.

Comments /
Resolution

Resolved.

bailsec.io 66

Issue_44 Votes can still be executed after designated address was removed

Severity Medium

Description A previously attached designated address can be trivially removed via
the assign function by assigning address(0) as new designated
address.

This behavior however does not prevent the poke function, as this
function can still be called permissionless, voting for the latest
configured pools, which is likely not desired once the designated
address has been removed.

Additionally, it needs to be mentioned that the poke function can be
invoked as soon as this contract is the owner of a tokenId and a vote
configuration has been set (transfers can only happen during an
abstained state).

Recommendations Consider ensuring that __ownerOf[_tokenID] is not address(0) during
the poke function.

Comments /
Resolution

Resolved.

bailsec.io 67

Issue_45 Rebase rewards will not be delegated to designated address if tokenId
has expired

Severity Medium

Description The claimRebases function allows anyone to claim tokens on behalf of
any tokenId from the RewardsDistributor contract via the claim_many
function. Most of the time (or almost always), these rewards will just be
allocated to the tokenId if it's still locked. This is to 99% guaranteed
due to the maintenance logic.

However, in the rare situation where a tokenId is not locked anymore,
these rewards will just be transferred to the owner, which is the
MonolithicVoter in that scenario:

https://github.com/SwapX-Exchange/contracts-
rb/blob/c2e6cc77adcb70cf839e7158e4bd10731416b4f9/contracts/Re
wardsDistributor.sol#L315

Afterwards, a malicious user (designated address for a different
tokenId) can exploit this scenario by subsequently calling the
claimVoterRewards function with the received token as parameter (as
long as the bribe supports it), which will then transfer the stuck token
to the designated address, which is in that scenario the malicious actor
instead of the designated address of the initial tokenId.

*Notably, the claim_many function can also be directly and
permissionless invoked on the RewardsDistributor contract to achieve
the same result.

Recommendations Consider executing a loop over all tokenIds, checking for each tokenId
that it has not expired. This will however not prevent the direct
interaction.

Therefore we overall simply recommend ensuring that all custodied
tokenIds are permanently max-locked.

bailsec.io 68

Comments /
Resolution

Acknowledged.

Issue_46 Lock-out possibility due to lack of address(0) check

Severity Low

Description Currently, it is possible to set both the operator and the multisig to
address(0). In such a scenario, all tokenIds would be permanently
locked in the contract.

Recommendations Consider validating the parameters accordingly.

Comments /
Resolution

Resolved.

Issue_47 Lack of safeTransfer usage

Severity Low

Description The contract uses the standard transfer pattern for ERC20 transfers.
This will malfunction for tokens that return false on transfer that do not
return a boolean on the transfer.

Recommendations Consider using safeTransfer.

Comments /
Resolution

Resolved.

bailsec.io 69

Issue_48 Lack of ERC721 Interface

Severity Informational

Description Currently, the contract lacks the interface which is needed to receive
NFTs via safeTransferFrom. This can slightly disrupt the UX.

Recommendations Consider implementing this interface.

Comments /
Resolution

Resolved.

	Titel page Example
	Bailsec - SwapX Exchange - Final Report

