
BAILSEC.IO

OFFICE@BAILSEC.IO

X: @BAILSECURITY

TG: @HELLOATBAILSEC

FINAL REPORT:
Algebra - SwapX
Fee Plugin - Update Audit

July 2024

bailsec.io 1

Disclaimer:

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in the
target system or codebase.

The content of this assessment is not an investment. The information provided in this report is
for general informational purposes only and is not intended as investment, legal, financial,
regulatory, or tax advice. The report is based on a limited review of the materials and
documentation provided at the time of the audit, and the audit results may not be complete or
identify all possible vulnerabilities or issues. The audit is provided on an "as-is," "where-is," and
"as-available" basis, and the use of blockchain technology is subject to unknown risks and flaws.

The audit does not constitute an endorsement of any particular project or team, and we make
no warranties, expressed or implied, regarding the accuracy, reliability, completeness, or
availability of the report, its content, or any associated services or products. We disclaim all
warranties, including the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement.

We assume no responsibility for any product or service advertised or offered by a third party
through the report, any open-source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by, or accessible through the report, its content, and
the related services and products. We will not be liable for any loss or damages incurred as a
result of the use or reliance on the audit report or the smart contract.

The contract owner is responsible for making their own decisions based on the audit report and
should seek additional professional advice if needed. The audit firm or individual assumes no
liability for any loss or damages incurred as a result of the use or reliance on the audit report or
the smart contract. The contract owner agrees to indemnify and hold harmless the audit firm or
individual from any and all claims, damages, expenses, or liabilities arising from the use or
reliance on the audit report or the smart contract.

By engaging in a smart contract audit, the contract owner acknowledges and agrees to the
terms of this disclaimer.

bailsec.io 2

1. Project Details

Important:
Please ensure that the deployed contract matches the source-code of the last commit hash.

Project

Algebra Fee Plugin - Update Audit (differential)

Website algebra.finance

Language Solidity

Methods Manual Analysis

Github repository https://github.com/cryptoalgebra/Algebra/tree/3a25f11a6b9fc871
a2958d19748402180d855b9c

Resolution 1 https://github.com/cryptoalgebra/Algebra/tree/3513a9c97c7766
d738d89646160fdfff8eb1f3be/src/periphery/contracts

Resolution 2 https://github.com/cryptoalgebra/Algebra/blob/e1f358c1c2c9f6c
da455c6f0934b333af624e964/src/periphery/contracts/Nonfun
giblePositionManager.sol

Resolution 3 https://github.com/cryptoalgebra/Algebra/tree/0a15a8e807a42
4cba2d0cd06fca84976297f6424/src

https://github.com/cryptoalgebra/Algebra/tree/3a25f11a6b9fc871a2958d19748402180d855b9c
https://github.com/cryptoalgebra/Algebra/tree/3a25f11a6b9fc871a2958d19748402180d855b9c
https://github.com/cryptoalgebra/Algebra/tree/3513a9c97c7766d738d89646160fdfff8eb1f3be/src/periphery/contracts
https://github.com/cryptoalgebra/Algebra/tree/3513a9c97c7766d738d89646160fdfff8eb1f3be/src/periphery/contracts
https://github.com/cryptoalgebra/Algebra/blob/e1f358c1c2c9f6cda455c6f0934b333af624e964/src/periphery/contracts/NonfungiblePositionManager.sol
https://github.com/cryptoalgebra/Algebra/blob/e1f358c1c2c9f6cda455c6f0934b333af624e964/src/periphery/contracts/NonfungiblePositionManager.sol
https://github.com/cryptoalgebra/Algebra/blob/e1f358c1c2c9f6cda455c6f0934b333af624e964/src/periphery/contracts/NonfungiblePositionManager.sol
https://github.com/cryptoalgebra/Algebra/tree/0a15a8e807a424cba2d0cd06fca84976297f6424/src
https://github.com/cryptoalgebra/Algebra/tree/0a15a8e807a424cba2d0cd06fca84976297f6424/src

bailsec.io 3

2. Detection Overview

Severity

Found

Resolved

Partially
Resolved

Acknowledged
(no change made)

High 1 1

Medium 2 2

Low 6 2 4

Informational 3 1 2

Governance 1 1

Total 13 3 10

2.1 Detection Definitions

Severity

Description

High The problem poses a significant threat to the confidentiality of a
considerable number of users' sensitive data. It also has the
potential to cause severe damage to the client's reputation or result
in substantial financial losses for both the client and the affected
users.

Medium While medium level vulnerabilities may not be easy to exploit, they
can still have a major impact on the execution of a smart contract.
For instance, they may allow public access to critical functions,
which could lead to serious consequences.

Low Poses a very low-level risk to the project or users. Nevertheless the
issue should be fixed immediately

Informational Effects are small and do not post an immediate danger to the
project or users

Governance Governance privileges which can directly result in a loss of funds or
other potential undesired behavior

bailsec.io 4

3. Detection

Bailsec was tasked with a differential audit of Algebras NonfungiblePositionManager/Plugin
architecture:

Old Commit:
https://github.com/cryptoalgebra/Algebra/tree/0fe96d86be5ae446901d3abb244b96be7600a
deb

New Commit:
https://github.com/cryptoalgebra/Algebra/tree/3a25f11a6b9fc871a2958d19748402180d855b9
c

Files in Scope:

1. NonfungiblePositionManager.sol (https://www.diffchecker.com/WzNG7bxX/)
2. BasePluginV1Factory.sol (https://www.diffchecker.com/L0XXu83W/)
3. AlgebraBasePluginV1.sol (https://www.diffchecker.com/xo9C2ghV/)

Primary Update Overview:

The key update in this differential audit is about the introduction of the withdrawalFee and the
incorporation in the Plugin and the PluginFactory

Security Considerations:

a) Incorrect Fee Calculation: The main problem could be the incorrect calculation of the
fee. This must be carefully investigated and all possible edge-cases must be considered.

b) Fee Circumvention: In certain scenarios or edge-cases it may be possible that users can
circumvent paying the fee. This must be investigated

c) “Breaking” Changes: Changes, especially fee calculations can often introduce issues
which result in a revert. This may be some arithmetic reverts or simply mistakes in the

https://github.com/cryptoalgebra/Algebra/tree/0fe96d86be5ae446901d3abb244b96be7600adeb
https://github.com/cryptoalgebra/Algebra/tree/0fe96d86be5ae446901d3abb244b96be7600adeb
https://github.com/cryptoalgebra/Algebra/tree/3a25f11a6b9fc871a2958d19748402180d855b9c
https://github.com/cryptoalgebra/Algebra/tree/3a25f11a6b9fc871a2958d19748402180d855b9c
https://www.diffchecker.com/WzNG7bxX/
https://www.diffchecker.com/L0XXu83W/
https://www.diffchecker.com/xo9C2ghV/

bailsec.io 5

calculation that request a too large fee. Furthermore, due to the adjustments in the
BasePluginV1Factory and AlgebraBasePluginV1, another potential scenario for accidental
reverts is introduced.

d) Impact on Farming Module: Due to the fact that a fee is applied on the liquidity, this will
have an impact on the Farming Module. It must be checked that this is reflected
properly.

e) Impact on Rewards: Rewards are always based on the provided liquidity. It must be
checked that these rewards are still calculated correctly.

bailsec.io 6

NonfungiblePositionManager

The NonfungiblePositionManager is the main entry contract that allows users to interact with the
Core and Farming modules.

Users can provide one or both tokens and mint LP tokens. These LP tokens are then wrapped
into a NFT which represents the position. Specifically, the following interactions are possible:

a) Mint: Allows users to create a new tokenId by providing token0/token1 to the liquidity
pool.

b) IncreaseLiquidity: Allows users to increase the position size on an already existing

tokenId.

c) DecreaseLiquidity: Allows users to decrease the position size on an already existing
tokenId.

d) Collect: Allows users to accrue fees from a position. Accrued fees are calculated since

the last position update.

Furthermore, once a position/tokenId has been created, this position can be used to farm
rewards within the Farming module.

A novel feature is the implementation of a withdrawal fee. This allows governance the
introduction of withdrawal fees whenever a position is decreased and it works as follows:

1) A pool can be assigned with a withdrawal fee. This includes APR for token0 and token1
and a withdrawal fee.

2) Whenever a position is adjusted (increased/decreased), the withdrawal fee is calculated

based on the apr settings and the withdrawal fee. This fee is then converted to the
corresponding liquidity and stored in the withdrawalFeeLiquidity variable for the specific
tokenId

3) Whenever a position is decreased, this fee will be deducted from a position’s liquidity.

bailsec.io 7

Below we will summarize all changes since the last commit:

- PositionWithdrawalFee struct. This struct exposes lastUpdateTimestamp and
withdrawalFeeLiquidity and will be corresponding to each existing tokenId.

- FEE_DENOMINATOR: This variable is used for fee and apr calculation purposes and is
denominated in 1e3.

- withdrawalFeesVault: This address will receive all withdrawal fees.
- withdrawalFeePoolParams[pool]: This mapping is corresponding to each pool, it exposes

apr0, apr1 and withdrawalFee
- positionsWithdrawalFee: This view-only function shows the current fee state for a tokenId
- mint: The mint function was adjusted to set the initial fee state for a tokenId
- _calculateWithdrawalFees: This is the most fundamental function and calculates the fee

for a tokenId since the last update. The fee is determined as liquidity.
- increaseLiquidity: The increaseLiquidity function was adjusted to update and store the fee

since the last update time.
- decreaseLiquidity: The decreaseLiquidity function was adjusted to update and store the

fee since the last update time as well as deducting the fee from the position. It was
implemented to adjust for several edge-cases.

- Different setters: Setter function for aprs, withdrawalFee and withdrawalFeesVault were
implemented.

Privileged Functions:

- setFarmingCenter
- setTokenAPR
- setWithdrawalFee
- setVaultAddress

bailsec.io 8

Issue_01 Governance Privilege: Owner can set exorbitant fee

Severity Governance

Description Currently, governance of this contract has several privileges for
invoking certain functions that can drastically alter the contracts
behavior.

This includes setting a large APR/withdrawalFee.

Recommendations Consider incorporating a Gnosis Multisignature contract as owner and
ensuring that the Gnosis participants are trusted entities.

Comments /
Resolution

Acknowledged.

Issue_02 Liquidity fetching approach is incorrect

Severity High

Description Fee calculation flow explained:

1. Period since last update is determined
2. TWAT since last update is fetched
3. amount0/amount1 for position based on liquidity and TWAT are

fetched
4. Fee on one or both tokens is calculated based on time passed,

apr and withdrawalFee
5. Fee amount(s) from token0/1 is converted to the corresponding

liquidity

After the fee in token0 and token1 has been determined, the
corresponding liquidity for these amounts is fetched (step 5). This is
done by invoking the getLiquidityForAmount0/1 functions.

The problem: These functions can only be used when the position is
one-sided, otherwise they will return an incorrect value. We will

bailsec.io 9

demonstrate this with a PoC below.

Now one would think it may be possible to use the
getLiquidityForAmounts function, which is possible if the ratio between
both tokens is exactly the same and if the fee is the same. If this is not
the case, only the smaller of both liquidities will be returned:

https://github.com/cryptoalgebra/Algebra/blob/3a25f11a6b9fc871a29
58d19748402180d855b9c/src/core/contracts/test/LiquidityAmounts.s
ol#L71

Illustrated incorrect version:

- 100000e6 liquidity
- currentTick = 0 (79228162514264337593543950336)
- lowerTick = - 10000 (48055510970269007215549348797)
- upperTick = 10000 (130621891405341611593710811006)

This will correspond to:

amount0 = 39345417784
amount1 = 39345417784

If we now consider a 10% fee on both amounts this will result in the
following fee:

fee0 = 3934541778
fee1 = 3934541778

Now following the amount to liquidity conversion using
getLiquidityForAmount0/1:

liquidityForFee0 = 3775465434
liquidityForFee1 = 3775465434

https://github.com/cryptoalgebra/Algebra/blob/3a25f11a6b9fc871a2958d19748402180d855b9c/src/core/contracts/test/LiquidityAmounts.sol#L71
https://github.com/cryptoalgebra/Algebra/blob/3a25f11a6b9fc871a2958d19748402180d855b9c/src/core/contracts/test/LiquidityAmounts.sol#L71
https://github.com/cryptoalgebra/Algebra/blob/3a25f11a6b9fc871a2958d19748402180d855b9c/src/core/contracts/test/LiquidityAmounts.sol#L71

bailsec.io 10

Summarized, the following liquidity will be taken as fee:

liquidityTakenTotal = 7550930868

As one can clearly see, this is not 10% of 1000000e6.

We can also use the same example and only apply a 10% fee on
tokenX or tokenY (not on both), this will then result in a liquidity fee of
3775465434, which does not represent 10%/2.

Furthermore, if we test with different position size:
tickLower: -1, tickHigher: 1, tickAvg: 0
liquidity: 1e18, amount0: 4.9996e13, amount1: 4.9996e13
feeLiq: 9.9997e16, fee0: 4.9995e12, fee1: 4.9995e12

tickLower: -100, tickHigher: 100, tickAvg: 0
liquidity: 1e18, amount0: 4.9872e15, amount1: 4.9872e15
feeLiq: 9.9750e16, fee0: 4.9748e14, fee1: 4.9748e14

tickLower: -10000, tickHigher: 10000, tickAvg: 0
liquidity: 1e18, amount0: 3.9345e17, amount1: 3.9345e17
feeLiq: 7.5509e16, fee0: 2.9709e16, fee1: 2.9709e16

tickLower: -500000, tickHigher: 500000, tickAvg: 0
liquidity: 1e18, amount0: 9.9999e17, amount1: 9.9999e17
feeLiq: 2.7810e6, fee0: 2.7810e6, fee1: 2.7810e6

We can see that the bigger the position, the lower the fees. This could
be used by users to pay 0 fees and is inconsistent between positions
that are highly concentrated and those that are very wide.

Note that this is almost not the case for positions that are single sided.
Such positions will almost all have the same fee.

Recommendations The problem: Algebra/Uniswap was never developed with the
need to fetch liquidity which is corresponding to a single token in

bailsec.io 11

a position which is two-sided. (For a one-sided position the used
concept would actually work)
Such a state would be invalid because a two-sided position always
consists of tokenX/tokenY. Hence, such a functionality does not
exist in the architecture.

It goes without saying that such a development is non-trivial and a lot
of resources will flow into auditing such a novel implementation. It will
require the following:

a) Mathematical derivation using UniswapV2’s Whitepaper
b) Extensive fuzzing

Comments /
Resolution

Acknowledged, the team decided to accept this risk and added
invariant tests which ensure that the fee can never become higher
than the anticipated percentage. This ensures users will never bear a
loss but can trick the system to pay less fee than expected.

It goes without saying that this issue was not fixed and invariant tests
are no guarantee that certain scenarios won’t happen, however, due
to the circumstances this solution seemed as the path of the least
resistance. Eventual side-effects cannot be excluded.

bailsec.io 12

Issue_03
Change of APR / withdrawalFee will alter fee in hindsight for all
positions

Severity Medium

Description Currently, the setTokenAPR and setWithdrawalFee functions allow to
alter the fee which is corresponding to a pool and its tokens.

If this value is changed, it will alter all fee calculations in hindsight.

Illustrated:

a) Alice has a large position and token0 has currently an APR of
10% and a withdrawalFee of 10%. The staked at the beginning
of the year and has since then not manipulated her position.

b) Governance changes apr for token0 to 100% and
withdrawalFee to 100% in the second half of the year.

c) Alice will effectively pay this fee for the first half of the year as
well.

Recommendations There is no trivial code-based solution for this problem. A possibility
would be to implement a function that loops over all tokenIds and
updates their fee state. This would need to be carefully audited to
ensure it doesn’t have negative side-effects.

However, currently we are just recommending to inform the
community such that they can update their positions beforehand.

Comments /
Resolution

Acknowledged.

bailsec.io 13

Issue_04
APR for Vault Token needs adjustment compared to the underlying
asset

Severity Low

Description
The earnings from staking are currently calculated using the formula:

(tokenAPR * period * liquidityAmount) / (FEE_DENOMINATOR * 365
days)

For vault tokens (e.g., wstETH), this calculation is incorrect.

For example, if the APR is 5% and a user stakes 1 wstETH for a year,
the amountEarnedFromStake is calculated as 0.05 wstETH. However,
due to the compounding nature of wstETH, the actual earnings would
be closer to 0.0476 wstETH.

Therefore, the APR for vault tokens needs to be adjusted to account
for compounding.

Recommendations Consider carefully adjusting the APR calculation for vault tokens to
avoid overestimating the earnings. In our example, the APR should
have been set to `0.05 / 1.05 = 0.0476`

Comments /
Resolution

Acknowledged.

bailsec.io 14

Issue_05 Lack of validation for withdrawalFeesVault upon contract deployment

Severity Low

Description The withdrawalFeesVault is set upon contract deployment but lacks an
address(0) check. In such a scenario where it is set to address(0) and
remains address(0), it will break fee collection and therefore
decreaseLiquidity will result in a DoS.

Recommendations Consider validating it accordingly within the constructor.

Comments /
Resolution

Resolved.

Issue_06
Fee deduction will not impact farming position/position size until
decreaseLiquidity function is invoked

Severity Low

Description Currently, the fee is accumulated during the increaseLiquidity and
decreaseLiquidity functions. However, it is only applied during the
decreaseLiquidity function.

Therefore, even if users theoretically have to pay a fee, this fee is not
realized until a position is decreased. Thus users can benefit from their
full position size for liquidity and farming rewards.

Recommendations A solution would be to decrease the liquidity also when the position is
increased. However, we do not recommend this change as it
incorporates complexity and increased gas costs.

We simply recommend acknowledging this issue.

Comments /
Resolution

Acknowledged.

bailsec.io 15

Issue_07 Uncollected fees can still be taken if fee exceeds position liquidity

Severity Informational

Description In the event where the withdrawalFee exceeds the position size, the
fee will be limited to the position size:

https://github.com/cryptoalgebra/Algebra/blob/3a25f11a6b9fc871a29
58d19748402180d855b9c/src/periphery/contracts/NonfungiblePositi
onManager.sol#L444

This will however not incorporate any accrued rewards. Therefore,
even if users may be solvent due to accrued rewards, none of these
rewards would be taken to pay the excess fee.

Recommendations This is likely a design issue and incorporating the unclaimed rewards
would mean that the contract must be rewritten. Therefore this issue
can be acknowledged if this is in fact desired per design.

Comments /
Resolution

Acknowledged.

https://github.com/cryptoalgebra/Algebra/blob/3a25f11a6b9fc871a2958d19748402180d855b9c/src/periphery/contracts/NonfungiblePositionManager.sol#L444
https://github.com/cryptoalgebra/Algebra/blob/3a25f11a6b9fc871a2958d19748402180d855b9c/src/periphery/contracts/NonfungiblePositionManager.sol#L444
https://github.com/cryptoalgebra/Algebra/blob/3a25f11a6b9fc871a2958d19748402180d855b9c/src/periphery/contracts/NonfungiblePositionManager.sol#L444

bailsec.io 16

Issue_08 DecreaseLiquidity event emits incorrect liquidity parameter

Severity Informational

Description The DecreaseLiquidity event has the following parameters:

event DecreaseLiquidity(
 uint256 indexed tokenId,
 uint128 liquidity,
 uint128 withdrawalFeeliquidity,
 uint256 amount0,
 uint256 amount1
);

The liquidity parameter represents how much was de facto withdrawn.

See actual implementation:

emit DecreaseLiquidity(params.tokenId, params.liquidity,
positionWithdrawalFeeLiquidity, amount0, amount1);

In the scenario where params.liquidity > liquidityDeltaWithoutFee, this
event emission is incorrect.

Recommendations Consider using liquidityDeltaWithoutFee as 2nd parameter.

Comments /
Resolution

Resolved.

bailsec.io 17

BasePluginV1Factory

The BasePluginV1Factory contract is the main Factory contract for Plugins. It exposes
functionality that is invoked before a Pool creation and will deploy the BasePlugin which is then
plugged onto the created pool. Furthermore it keeps track of the newly developed plugin.

The only change which was made is the introduction of the modifyLiquidityEntryPoint variable
and its corresponding setter function. This variable is solely fetched upon the
AlgebraBasePluginV1 deployment to set the corresponding entry point.

Privileged Functions:

- setDefaultFeeConfiguration
- setFarmingAddress
- setModifyLiquidityEntrypoint

No issues found.

bailsec.io 18

AlgebraBasePluginV1

The AlgebraBasePluginV1 contract is the base plugin which is used for pool deployments. It
incorporates all base hook functions and handles the dynamic fee.

The only change to the previous version is the addition of the
BEFORE_MODIFY_POSITION_FLAG and the modifyLiquidityEntryPoint. Whenever a position is
modified (mint/burn), the beforeModifyPosition hook is called. This hook ensures that the caller
is in fact the modifyLiquidityEntryPoint (NonfungiblePositionManager).

Privileged Functions

- setModifyLiquidityEntrypoint
- setIncentive
- changeFeeConfiguration

Issue_09 Inability to invoke setModifyLiquidityEntrypoint via factory

Severity Low

Description The setModifyLiquidityEntrypoint function can either be invoked by the
factory owner or the pluginFactory.

The BasePluginV1Factory does however not expose such a cross-
contract call to deployed plugins.

Recommendations Consider removing the ability for the pluginFactory to invoke this
function.

Comments /
Resolution

Resolved.

bailsec.io 19

NonfungiblePositionManager

After the audit, an update has been implemented on the NonfungiblePositionManager which
introduces the distribution of withdrawal fees to different addresses based on the pool.
In the previous iterations, all fees were withdrawn to one single address. Now it is allowed to
determine multiple different withdrawal addresses for each pool.

This will result in the following diff-check:

https://www.diffchecker.com/X3csW02v/

The following changes are explicit:

a) Introduction of multi-distribution for withdrawal fee to different vaults with different
percentages

b) Introduction of setVaultsForPool function which allows to set different vaults with
corresponding fee for each pool

c) Addition of feeVaults array in the WithdrawalFeePoolParams struct

Disclaimer: This audit involves only the changes provided by the corresponding diffchecker files.

Please be advised that for issues which are reported outside of the diffchecker scope, an
additional resolution must be scheduled. A differential audit is always a constrained task because

not the full codebase is re-audited. This will have inherent consequences if intrusive changes have
side-effects on parts of a codebase/module, which is not part of the audit scope.

https://www.diffchecker.com/X3csW02v/

bailsec.io 20

Issue_10 Position withdrawal in case of blacklisted vault will result in DoS

Severity Low

Description The decreaseLiquidity function transfers out fees either to one default
address or to multiple different vaults. If one of these vaults is
blacklisted for the fee token, this will result in a revert of the transfer
and thus in a DoS of the decreaseLiquidity function until the vault is
removed.

Recommendations Consider removing the vault in such a scenario.

Comments /
Resolution

Acknowledged.

bailsec.io 21

Issue_11 Truncation during fee collection for multiple vaults

Severity Informational

Description The multi fee distribution is calculated as follows:

 for (uint i = 0; i < vaults.length; i++) {
 uint16 feePart = vaults[i].fee;
 pool.collect(
 vaults[i].feeVault,
 tickLower,
 tickUpper,
 uint128((amount0 * feePart) / FEE_DENOMINATOR),
 uint128((amount1 * feePart) / FEE_DENOMINATOR)
);
 }

The practice of percentage proportional calculations will always result
in truncation for solidity operation.

Recommendations This issue can be acknowledged because it will only accumulate dust
and no noticeable amounts.

Comments /
Resolution

Acknowledged.

bailsec.io 22

[UPDATE] Entry Point Whitelisting

After the initial update and the above mentioned update, a 2nd update has been introduced
which is reflected as resolution 3 under the following commit:

https://github.com/cryptoalgebra/Algebra/tree/0a15a8e807a424cba2d0cd06fca84976297f64
24/src	

This update modifies the following contracts:

a. NonfungiblePositionManager
b. BasePluginV1Factory
c. AlgebraBasePlugin

The main change which has been introduced is the shift from one entry point to multiple entry
points. The rationale behind this change is to not only allow the NonfungiblePositionManager to
modify a position but also potentially other third party contracts. The side-effect of that is that
every party which is whitelisted can interact directly with the AlgebraPool contract, bypassing
the LST fee.

The following changes were made explicit:

a. NonfungiblePositionManager: https://www.diffchecker.com/TbiByIVb/	

• Implementation of calculateLatestWithdrawalFeesLiquidity: This function calculates and
returns the full pending withdrawalFeeLiquidity for a positionId, up to the current
block.timestamp.

• Implementation of calculatePendingWithdrawalFeesLiquidity: This function calculates the
current pending fee from lastUpdateTimestamp to block.timestamp without the existing
withdrawalFeeLiquidity.

b. BasePluginV1Factory: https://www.diffchecker.com/s5rk3da4/

• Implementation of multiple entry points. Instead of as in the previous iteration where the
contract had only one entry point: modifyLiquidityEntrypoint, the contract now exposes a
mapping: modifyLiquidityEntryPointsStatuses, which can be set by governance and now
allows for the addition of multiple entry points.

• Functions for adding and removing entry points were created.

https://github.com/cryptoalgebra/Algebra/tree/0a15a8e807a424cba2d0cd06fca84976297f6424/src
https://github.com/cryptoalgebra/Algebra/tree/0a15a8e807a424cba2d0cd06fca84976297f6424/src
https://www.diffchecker.com/TbiByIVb/
https://www.diffchecker.com/s5rk3da4/

bailsec.io 23

• Function selector change of beforeCreatePoolHook to createPlugin which is now
standardized to Algebra V1.0

c. AlgebraBasePluginV1: https://www.diffchecker.com/SnXhyIvU/

• Logic for single entry point was removed
• beforeModifyPosition function was adjusted to now consult the

BasePluginV1Factory.modifyLiquidityEntryPointStatuses mapping	

Issue_12
View-only calculateLatestWithdrawalFeesLiquidity may return incorrect
data in case of hindsight update

Severity Medium

Description Within the main review, we have already raised the issue that if the
APR of withdrawalFee is changed, this will skew the fee calculation
since lastUpdateTime.

In the scenario where a third-party provider uses the
calculateLatestWithdrawalFeesLiquidity function uses and relies on the
correctness of it, this issue is even amplified as such a hindsight
update will essentially manipulate the assumption which can result in
critical issues depending on the implementation.

Recommendations There is no trivial fix besides removing the view-only nature of the
function and automatically updating the fee and lastUpdateTime.

However, such a change would mean a 4th iteration of this audit is
needed which will significantly increase the risk.

Thus we recommend executing a dusting attack on all existing
positions to update their state before changing the fee.

Comments /
Resolution

Acknowledged. We advise users interacting with the
calculateLatestWithdrawalFeesLiquidity onchain to make the call in the
same transaction in which the position is interacted with

https://www.diffchecker.com/SnXhyIvU/

bailsec.io 24

Issue_13 Isolated pool entry points are impossible

Severity Low

Description In the previous iteration, the entry point was set during the initialization
to the state variable within the factory.

However, the setModifyLiquidityEntrypoint function allowed
governance to change the entry point which allowed each pool to
have its own entry point without requiring other pools to follow the
same.

This flexibility is now removed as the factory is considered directly
within the beforeModifyPosition function.

Recommendations Consider if this limited flexibility is acceptable, if not a different
approach is required.

Comments /
Resolution

Acknowledged. This limited flexibility is acceptable to us.

	Algebra
	Bailsec - Algebra.Finance - SwapX - Fee Plugin - Final Report

